01.正太分布模型
import numpy as np import matplotlib.pyplot as plt from math import sqrt, pi, exp def normal_distribution(mu, sigma): # 调用函数生成一组正态分布随机数 size = 100000 noise = np.random.normal(mu, sigma, size) # 正态分布的概率密度函数 x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 50) y = np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)) / (sigma * sqrt(2 * pi)) plt.hist(noise, bins=100, density=True) plt.plot(x, y) plt.show() if __name__ == "__main__": normal_distribution(25, 5)