(差分约束系统) poj 1201
Intervals
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 22781 | Accepted: 8613 |
Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Source
题目大意:有n个区间,每个区间有3个值,ai,bi,ci代表,在区间[ai,bi]上至少要选择ci个整数点,ci可以在区间内任意取不重复的点
现在要满足所有区间的自身条件,问最少选多少个点
解题思路:
差分约束的思想:可以肯定的是s[bi]-s[ai-1]>=ci; 为什么要ai-1,是因为ai也要选进来
在一个是s[i]-s[i-1]<=1;
s[i]-s[i-1]>=0
所以整理上面三个式子可以得到约束条件:
①s[ai-1]-s[bi] <= -ci
②s[i]-s[i-1] <= 1
③s[i-1]-s[i] <= 0
#include<cstdio> #include<cstring> #include<string> #include<cmath> #include<cstdlib> #include<algorithm> #include<iostream> #include<queue> #include<climits> using namespace std; int n,minn,maxx,cnt; bool vis[50010]; int dist[50010]; struct node { int to,len,next; }e[210000]; int head[50010]; void add(int u,int v,int len) { e[++cnt].to=v; e[cnt].len=len; e[cnt].next=head[u]; head[u]=cnt; } void spfa() { queue<int> q; for(int i=minn;i<=maxx;i++) { vis[i]=0; dist[i]=INT_MAX; } dist[maxx]=0; vis[maxx]=1; q.push(maxx); while(!q.empty()) { int x=q.front(); q.pop(); vis[x]=0; for(int i=head[x];i;i=e[i].next) { int v=e[i].to; int w=e[i].len; if(dist[v]>dist[x]+w) { dist[v]=dist[x]+w; if(!vis[v]) { q.push(v); vis[v]=1; } } } } } int main() { scanf("%d",&n); cnt=1; minn=INT_MAX,maxx=-INT_MAX; for(int i=1;i<=n;i++) { int a,b,c; scanf("%d%d%d",&a,&b,&c); minn=min(a,minn); maxx=max(maxx,b+1); add(b+1,a,-c); } for(int i=minn;i<maxx;i++) { add(i+1,i,0); add(i,i+1,1); } spfa(); printf("%d\n",-dist[minn]); return 0; }