(判断是否为弱联通分量) poj 2762
Going from u to v or from v to u?
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15294 | Accepted: 4047 |
Description
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?
Input
The first line contains a single integer T, the number of test cases. And followed T cases.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.
Output
The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.
Sample Input
1 3 3 1 2 2 3 3 1
Sample Output
Yes
Source
POJ Monthly--2006.02.26,zgl & twb
先缩点,然后从 入度为0的点出发,进行DFS找出链子的长度是否为点的个数,ok
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<algorithm> #include<string> #include<vector> #include<queue> #include<stack> using namespace std; vector<int> e[1010],mp[1010]; stack<int> s; int n,m,Dfs[1010],use[1010],isstack[1010],low[1010],in[1010],mark[1010]; bool vis[1010][1010]; int top,newflag,ans; void init() { memset(Dfs,0,sizeof(Dfs)); memset(use,0,sizeof(use)); memset(isstack,0,sizeof(isstack)); memset(low,0,sizeof(low)); memset(vis,0,sizeof(vis)); memset(in,0,sizeof(in)); memset(mark,0,sizeof(mark)); top=newflag=0; ans=0; for(int i=1;i<=n;i++) e[i].clear(),mp[i].clear(); while(!s.empty()) s.pop(); } void dfs(int u) { mark[u]=1; ans++; for(int i=0;i<mp[u].size();i++) { int v=mp[u][i]; if(!mark[v]) { dfs(v); return ; } } } void tarjan(int u) { Dfs[u]=low[u]=++top; s.push(u); isstack[u]=1; for(int i=0;i<e[u].size();i++) { int v=e[u][i]; if(!Dfs[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if(isstack[v]) low[u]=min(low[u],Dfs[v]); } if(low[u]==Dfs[u]) { newflag++; int x; do { x=s.top(); s.pop(); isstack[u]=0; use[x]=newflag; }while(x!=u); } } int main() { int tt; scanf("%d",&tt); while(tt--) { scanf("%d%d",&n,&m); init(); for(int i=1;i<=m;i++) { int x,y; scanf("%d%d",&x,&y); e[x].push_back(y); } for(int i=1;i<=n;i++) { if(!Dfs[i]) tarjan(i); } for(int i=1;i<=n;i++) { for(int j=0;j<e[i].size();j++) { if(use[i]!=use[e[i][j]]&&!vis[use[i]][use[e[i][j]]]) { mp[use[i]].push_back(use[e[i][j]]); vis[use[i]][use[e[i][j]]]=1; in[use[e[i][j]]]++; } } } for(int i=1;i<=newflag;i++) { if(in[i]==0) { dfs(i); break; } } if(ans==newflag) printf("Yes\n"); else printf("No\n"); } return 0; }