(贪心+倍增求LCA) hdu 4912
Paths on the tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1097 Accepted Submission(s): 366
Problem Description
bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.
There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.
Find the maximum number of paths bobo can pick.
There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.
Find the maximum number of paths bobo can pick.
Input
The input consists of several tests. For each tests:
The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
Output
For each tests:
A single integer, the maximum number of paths.
A single integer, the maximum number of paths.
Sample Input
3 2
1 2
1 3
1 2
1 3
7 3
1 2
1 3
2 4
2 5
3 6
3 7
2 3
4 5
6 7
Sample Output
1
2
Author
Xiaoxu Guo (ftiasch)
Source
从最深的公共祖先开始选择,选完之后,他的所有子节点都不可能再选,不然就重复了
用倍增思想求解即可
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<string> #include<algorithm> #include<queue> #include<vector> #include<stack> #include<map> #include<set> using namespace std; vector<int> e[100005]; struct node { int x,y,z; }mp[100005]; int n,m,vis[100005],deep[100005],f[100005][30],mark[100005]; void init() { for(int i=1;i<=n;i++) { vis[i]=0; deep[i]=0; mark[i]=0; e[i].clear(); } memset(f,0,sizeof(f)); } void dfs(int u) { vis[u]=1; for(int i=0;i<e[u].size();i++) { int v=e[u][i]; if(v==f[u][0]) continue; if(!vis[v]) { deep[v]=deep[u]+1; f[v][0]=u; dfs(v); } } } void bz() { for(int i=1;(1<<i)<=n;i++) { for(int j=1;j<=n;j++) { f[j][i]=f[f[j][i-1]][i-1]; } } } bool cmp(node a,node b) { return deep[a.z]>deep[b.z]; } int LCA(int x,int y) { int i,j; if(deep[x]<deep[y]) swap(x,y); for(i=0;(1<<i)<=deep[x];i++); i--; for(j=i;j>=0;j--) { if(deep[x]-(1<<j)>=deep[y]) { x=f[x][j]; } } if(x==y) return y; for(j=i;j>=0;j--) { if(f[x][j]!=f[y][j]) { x=f[x][j]; y=f[y][j]; } } return f[x][0]; } void col(int u) { mark[u]=1; for(int i=0;i<e[u].size();i++) { int v=e[u][i]; if(deep[v]==deep[u]+1&&!mark[v]) col(v); } } int main() { while(scanf("%d%d",&n,&m)!=EOF) { init(); for(int i=1;i<n;i++) { int x,y; scanf("%d%d",&x,&y); e[x].push_back(y); e[y].push_back(x); } f[1][0]=1; deep[1]=1; dfs(1); bz(); for(int i=0;i<m;i++) { int x,y; scanf("%d%d",&x,&y); mp[i].x=x,mp[i].y=y,mp[i].z=LCA(x,y); } int ans=0; sort(mp,mp+m,cmp); for(int i=0;i<m;i++) { if(!mark[mp[i].x]&&!mark[mp[i].y]) { ans++; col(mp[i].z); } } printf("%d\n",ans); } return 0; }