P1487 失落的成绩单
P1487 失落的成绩单
a[i]=a[i-2]-2.0*a[i-1]+2.0*d;
a[2]越大,a[3]越小
a[3]越大,a[4]越小
所以a[2]越大,a[4]越大,a[3]越小
就有了单调性,分奇偶进行二分
细节:二分的时候,l不一定为0,1e10为浮点数,eps小点好
#include <iostream> #include <cstdio> #include <queue> #include <algorithm> #include <cmath> #include <cstring> #define inf 2147483647 #define N 1000010 #define p(a) putchar(a) #define For(i,a,b) for(int i=a;i<=b;++i) //by war //2019.9.4 using namespace std; int n,m; long double d,a[N],l,r,mid,eps=1e-12,t; void in(int &x){ int y=1;char c=getchar();x=0; while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();} while(c<='9'&&c>='0'){ x=(x<<1)+(x<<3)+c-'0';c=getchar();} x*=y; } void o(int x){ if(x<0){p('-');x=-x;} if(x>9)o(x/10); p(x%10+'0'); } bool check(long double x){ For(i,3,n) a[i]=a[i-2]-2.0*a[i-1]+2.0*d; return a[n]-t>=eps; } signed main(){ in(n);in(m); cin>>d>>a[1]>>t; l=-1e12;r=1e12; while(r-l>eps){ a[2]=(l+r)/2.0; if(check(a[2])){ if(n&1) l=a[2]; else r=a[2]; } else{ if(n&1) r=a[2]; else l=a[2]; } } printf("%.3Lf\n",a[m]); return 0; }