https://vjudge.net/problem/2198220/origin
https://vjudge.net/problem/2198220/origin
枚举等差数列第一个和第二个,然后二分确定数列后面是否存在,复杂度比较玄学,卡过了。
#include<iostream> #include<cstdio> #include<queue> #include<algorithm> #include<cmath> #include<ctime> #include<set> #include<map> #include<stack> #include<cstring> #define inf 2147483647 #define ls rt<<1 #define rs rt<<1|1 #define lson ls,nl,mid,l,r #define rson rs,mid+1,nr,l,r #define N 5010 #define For(i,a,b) for(register int i=a;i<=b;i++) #define p(a) putchar(a) #define g() getchar() using namespace std; int n; int a[N],ans,d,now,num; void in(int &x){ int y=1; char c=g();x=0; while(c<'0'||c>'9'){ if(c=='-')y=-1; c=g(); } while(c<='9'&&c>='0'){ x=(x<<1)+(x<<3)+c-'0';c=g(); } x*=y; } void o(int x){ if(x<0){ p('-'); x=-x; } if(x>9)o(x/10); p(x%10+'0'); } int main(){ in(n); For(i,1,n) in(a[i]); sort(a+1,a+n+1); ans=2; For(i,1,n-ans) For(j,i+1,n-ans+1){ d=a[j]-a[i]; now=2; num=a[j]; while(1){ num+=d; if(binary_search(a+1,a+n+1,num)) now++; else{ ans=max(ans,now); break; } } } o(ans); return 0; }
也可以dp做,f[j][i]=max(f[j][i],f[i][pre]+1);
f[j][i]表示j是等差数列最后一个下标,i是倒数第二个下标
#include<iostream> #include<cstdio> #include<queue> #include<algorithm> #include<cmath> #include<ctime> #include<set> #include<map> #include<stack> #include<cstring> #define inf 2147483647 #define ls rt<<1 #define rs rt<<1|1 #define lson ls,nl,mid,l,r #define rson rs,mid+1,nr,l,r #define N 5010 #define For(i,a,b) for(int i=a;i<=b;i++) #define p(a) putchar(a) #define g() getchar() using namespace std; int n; int a[N],ans,d,now,num,pre,f[N][N]; void in(int &x){ int y=1; char c=g();x=0; while(c<'0'||c>'9'){ if(c=='-')y=-1; c=g(); } while(c<='9'&&c>='0'){ x=(x<<1)+(x<<3)+c-'0';c=g(); } x*=y; } void o(int x){ if(x<0){ p('-'); x=-x; } if(x>9)o(x/10); p(x%10+'0'); } int main(){ in(n); For(i,1,n) in(a[i]); sort(a+1,a+n+1); ans=2; For(i,1,n) For(j,1,n) f[i][j]=2; For(i,1,n){ pre=i-1; For(j,i+1,n){ while(pre>0&&a[j]-a[i]>a[i]-a[pre]) pre--; if(!pre) break; if(pre>0&&a[j]-a[i]==a[i]-a[pre]) f[j][i]=max(f[j][i],f[i][pre]+1); ans=max(ans,f[j][i]); } } o(ans); return 0; }