Python全栈之路-Day40
1 互斥锁(同步锁)
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import time
import threading
def addNum():
global num # 在每个线程中都获取这个全局变量
Lock.acquire() # 每次只能有一个线程在运行Lock块的代码
temp = num
time.sleep(0.01)
num = temp - 1 # 对此公共变量进行-1操作
Lock.release()
num = 100 # 设定一个共享变量
Lock = threading.Lock() # 定义同步锁
thread_list = []
for i in range(100):
t = threading.Thread(target=addNum)
t.start()
thread_list.append(t)
for t in thread_list: #等待所有线程执行完毕
t.join()
print('Result: ', num)
2 死锁与递归锁
2.1 死锁
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import threading
import time
mutexA = threading.Lock()
mutexB = threading.Lock()
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
self.fun1()
self.fun2()
def fun1(self):
mutexA.acquire() # 如果锁被占用,则阻塞在这里,等待锁的释放
print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
mutexB.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
mutexB.release()
mutexA.release()
def fun2(self):
mutexB.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
time.sleep(0.2)
mutexA.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
mutexA.release()
mutexB.release()
if __name__ == "__main__":
print("start---------------------------%s"%time.time())
for i in range(0, 10):
my_thread = MyThread()
my_thread.start()
2.2 递归锁
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import threading
import time
RLock = threading.RLock() # 获得递归锁,可以acquire多次
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
self.fun1()
self.fun2()
def fun1(self):
RLock.acquire() # acquire计数加1
print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
RLock.acquire() # acquire计数加1
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
RLock.release() # acquire计数减1
RLock.release() # acquire计数减1 计数为0后其他线程就可以竞争这把锁
def fun2(self):
RLock.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
time.sleep(0.2)
RLock.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
RLock.release()
RLock.release()
if __name__ == "__main__":
print("start---------------------------%s"%time.time())
for i in range(0, 10):
my_thread = MyThread()
my_thread.start()
3 event对象
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import threading
import time
import logging
logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s',)
def worker(event):
logging.debug('Waiting for redis ready...')
event.wait()
logging.debug('redis ready, and connect to redis server and do some work [%s]', time.ctime())
time.sleep(1)
def main():
readis_ready = threading.Event() # 完成线程间的通信 相当于标志位
t1 = threading.Thread(target=worker, args=(readis_ready,), name='t1')
t1.start()
t2 = threading.Thread(target=worker, args=(readis_ready,), name='t2')
t2.start()
logging.debug('first of all, check redis server, make sure it is OK, and then trigger the redis ready event')
time.sleep(3) # simulate the check progress
readis_ready.set()
if __name__=="__main__":
main()
# event.isSet():返回event的状态值;
# event.wait():如果 event.isSet()==False将阻塞线程;
# event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
# event.clear():恢复event的状态值为False。
4 进程对象Process
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
from multiprocessing import Process
import os
import time
def info(name):
print("name:",name)
print('parent process:', os.getppid())
print('process id:', os.getpid())
print("------------------")
time.sleep(1)
def foo(name):
info(name)
if __name__ == '__main__':
info('main process line')
p1 = Process(target=info, args=('alvin',))
p2 = Process(target=foo, args=('egon',))
p1.start()
p2.start()
p1.join()
p2.join()
print("ending")
5 协程简介
5.1 yield与协程
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import time
"""
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高。
"""
# 注意到consumer函数是一个generator(生成器):
# 任何包含yield关键字的函数都会自动成为生成器(generator)对象
def consumer():
r = ''
while True:
# 3、consumer通过yield拿到消息,处理,又通过yield把结果传回;
# yield指令具有return关键字的作用。然后函数的堆栈会自动冻结(freeze)在这一行。
# 当函数调用者的下一次利用next()或generator.send()或for-in来再次调用该函数时,
# 就会从yield代码的下一行开始,继续执行,再返回下一次迭代结果。通过这种方式,迭代器可以实现无限序列和惰性求值。
n = yield r
if not n:
return
print('[CONSUMER] ←← Consuming %s...' % n)
time.sleep(1)
r = '200 OK'
def produce(c):
# 1、首先调用c.next()启动生成器
next(c)
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] →→ Producing %s...' % n)
# 2、然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
cr = c.send(n)
# 4、produce拿到consumer处理的结果,继续生产下一条消息;
print('[PRODUCER] Consumer return: %s' % cr)
# 5、produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
c.close()
if __name__=='__main__':
# 6、整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
c = consumer()
produce(c)
'''
result:
[PRODUCER] →→ Producing 1...
[CONSUMER] ←← Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 2...
[CONSUMER] ←← Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 3...
[CONSUMER] ←← Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 4...
[CONSUMER] ←← Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 5...
[CONSUMER] ←← Consuming 5...
[PRODUCER] Consumer return: 200 OK
'''
5.2 greentlet
greelet机制的主要思想是:生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操作进行恢复为止。可以使用一个调度器循环在一组生成器函数之间协作多个任务。greentlet是python中实现我们所谓的"Coroutine(协程)"的一个基础库.
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
from greenlet import greenlet
def test1():
print (12)
gr2.switch()
print (34)
gr2.switch()
def test2():
print (56)
gr1.switch()
print (78)
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
5.3 gevent
Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。
gevent是第三方库,通过greenlet实现协程,其基本思想是:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
import gevent
import time
def foo():
print("running in foo")
gevent.sleep(2)
print("switch to foo again")
def bar():
print("switch to bar")
gevent.sleep(5)
print("switch to bar again")
start=time.time()
gevent.joinall(
[gevent.spawn(foo),
gevent.spawn(bar)]
)
print(time.time()-start)
当然,实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:
#!/usr/bin/env python
# __Author__: "wanyongzhen"
# Date: 2017/5/9
from gevent import monkey
monkey.patch_all()
import gevent
from urllib import request
import time
import ssl
ssl._create_default_https_context = ssl._create_unverified_context # 解决Mac上的报错
def f(url):
print('GET: %s' % url)
resp = request.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url))
start=time.time()
gevent.joinall([
gevent.spawn(f, 'https://itk.org/'),
gevent.spawn(f, 'https://www.github.com/'),
gevent.spawn(f, 'https://zhihu.com/'),
])
# f('https://itk.org/')
# f('https://www.github.com/')
# f('https://zhihu.com/')
print(time.time()-start)