Spark介绍与环境搭建

1.什么是Spark(官网:http://spark.apache.org)


Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到12000台的规模,是当前已知的世界上最大的Spark集群。


2.为什么要学Spark

中间结果输出:基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。出于任务管道承接的,考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果

Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。

3.Spark的特点

与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。


易用

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。


通用

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

3.Spark集群安装

安装

准备两台以上Linux服务器,安装好JDK1.7

下载Spark安装包

http://www.apache.org/dyn/closer.lua/spark/spark-1.5.2/spark-1.5.2-bin-hadoop2.6.tgz

上传spark-1.5.2-bin-hadoop2.6.tgz安装包到Linux上

解压安装包到指定位置

tar -zxvf spark-1.5.2-bin-hadoop2.6.tgz -C /usr/local

配置Spark

进入到Spark安装目录

cd /usr/local/spark-1.5.2-bin-hadoop2.6

进入conf目录并重命名并修改spark-env.sh.template文件

cd conf/

mv spark-env.sh.template spark-env.sh

vi spark-env.sh

在该配置文件中添加如下配置

export JAVA_HOME=/usr/java/jdk1.7.0_45

export SPARK_MASTER_IP=master

export SPARK_MASTER_PORT=7077

保存退出

重命名并修改slaves.template文件

mv slaves.template slaves

vi slaves

在该文件中添加子节点所在的位置(Worker节点)

slave

slave2

slave3

保存退出

将配置好的Spark拷贝到其他节点上

scp -r spark-1.5.2-bin-hadoop2.6/ slave:/usr/local/

scp -r spark-1.5.2-bin-hadoop2.6/ slave2:/usr/local/

scp -r spark-1.5.2-bin-hadoop2.6/ slave3:/usr/local/

 

Spark集群配置完毕,目前是1个Master,3个Work,在master上启动Spark集群

/usr/local/spark-1.5.2-bin-hadoop2.6/sbin/start-all.sh

 

启动后执行jps命令,主节点上有Master进程,其他子节点上有Work进行,登录Spark管理界面查看集群状态(主节点):http://master:8080/

 

到此为止,Spark集群安装完毕,但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借助zookeeper,并且启动至少两个Master节点来实现高可靠,配置方式比较简单:

Spark集群规划:node1,node2是master;slave,slave2,slave3是Worker

安装配置zk集群,并启动zk集群

停止spark所有服务,修改配置文件spark-env.sh,在该配置文件中删掉SPARK_MASTER_IP并添加如下配置

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk1,zk2,zk3 -Dspark.deploy.zookeeper.dir=/spark"

1.在node1节点上修改slaves配置文件内容指定worker节点

2.在node1上执行sbin/start-all.sh脚本,然后在node2上执行sbin/start-master.sh启动第二个Master

执行Spark程序
执行第一个spark程序

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master spark://master:7077 \

--executor-memory 1G \

--total-executor-cores 2 \

/usr/local/spark-1.5.2-bin-hadoop2.6/lib/spark-examples-1.5.2-hadoop2.6.0.jar \

100

该算法是利用蒙特·卡罗算法求PI

启动Spark Shell

spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下用scala编写spark程序。

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell \

--master spark://master:7077 \

--executor-memory 2g \

--total-executor-cores 2

 

参数说明:

--master spark://master

启动spark shell

:7077 指定Master的地址

--executor-memory 2g 指定每个worker可用内存为2G

--total-executor-cores 2 指定整个集群使用的cup核数为2个

 

注意:

如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。

 

Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可

在spark shell中编写WordCount程序

首先启动hdfs

向hdfs上传一个文件到hdfs://master:9000/words.txt

在spark shell中用scala语言编写spark程序

sc.textFile("hdfs://master:9000/words.txt").flatMap(_.split(" "))

.map((_,1)).reduceByKey(_+_).saveAsTextFile("hdfs://master:9000/out")

 

使用hdfs命令查看结果

hdfs dfs -ls hdfs://master:9000/out/p*

 

说明:

sc是SparkContext对象,该对象时提交spark程序的入口

textFile(hdfs://master:9000/words.txt)是hdfs中读取数据

flatMap(_.split(" "))先map在压平

map((_,1))将单词和1构成元组

reduceByKey(_+_)按照key进行reduce,并将value累加

saveAsTextFile("hdfs://master:9000/out")将结果写入到hdfs中



posted @ 2017-01-03 14:41  晚樨  阅读(152)  评论(0编辑  收藏  举报