【HDU】2866:Special Prime【数论】

 

Special Prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 738    Accepted Submission(s): 390


Problem Description
Give you a prime number p, if you could find some natural number (0 is not inclusive) n and m, satisfy the following expression:
  

We call this p a “Special Prime”.
AekdyCoin want you to tell him the number of the “Special Prime” that no larger than L.
For example:
  If L =20
1^3 + 7*1^2 = 2^3
8^3 + 19*8^2 = 12^3
That is to say the prime number 7, 19 are two “Special Primes”.
 

Input
The input consists of several test cases.
Every case has only one integer indicating L.(1<=L<=10^6)
 

Output
For each case, you should output a single line indicate the number of “Special Prime” that no larger than L. If you can’t find such “Special Prime”, just output “No Special Prime!”
 

Sample Input
7 777
 

Sample Output
1 10
Hint
 

Source
 

Recommend
gaojie
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2018 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2018-10-18 11:20:31, Gzip enabled

Solution

纯数论推式子找性质辣


 分析:$n^b + p*n^{b-1} = m^b   ==>   n^{b-1}*[n+p]=m^b$

因为$n$里面要么有$p$因子,要么没有,所以$gcd(n^{b-1},n+p)=1$或(含有p因子的数)

当$gcd(n^{b-1},n+p)== (含有p因子的数)$的时候,显然无解,因为假设有解,那么$n=K*p , K^{b-1}*p^b*(K+1)$

如果希望上面的$==m^b$,那么$K^{b-1} *(K+1)$必须能表示成某个数X的b次方,而$gcd(K,K+1)=1$,所以他们根本就没共同因

子,所以没办法表示成$X$的$b$次方,所以$gcd(n^{b-1},n+p)=1$

 

假设$n=x^b$,$n+p=y^b$,那么显然$m=x^{b-1}*y$,而$p=y^b-x^b$

 

显然$(y-x)|p$,那么必须有$y-x=1$,所以$y=x+1$,代上去就发现,$p=(x+1)^b-x ^b$。所以枚举$x$,然后判断$p$是否是素数即可。
---------------------
作者:acdreamers
来源:CSDN
原文:https://blog.csdn.net/acdreamers/article/details/8572959 


 Code

#include<bits/stdc++.h>
using namespace std;

int isnot[1000005], prime[300005], t, ans[1000005];

void init() {
    isnot[1] = 1;
    for(int i = 2; i <= 1000000; i ++) {
        if(!isnot[i])    prime[++t] = i;
        for(int j = 1; j <= t; j ++) {
            int v = prime[j] * i;
            if(v > 1000000)    break;
            isnot[v] = 1;
            if(i % prime[j] == 0)    break;
        }
    }
    for(int i = 1; ; i ++) {
        int v = (i + 1) * (i + 1) * (i + 1) - i * i * i;
        if(v > 1000000)    break;
        if(!isnot[v]) {
            ans[v] = 1;
        }
    }
    for(int i = 1; i <= 1000000; i ++)    ans[i] += ans[i - 1];
}

int main() {
    int n;
    init();
    while(scanf("%d", &n) == 1) {
        if(n < 7)    printf("No Special Prime!\n");
        else        printf("%d\n", ans[n]);
    }
    return 0;
}

 

posted @ 2018-10-18 11:37  Wans_ovo  阅读(259)  评论(0编辑  收藏  举报