Fork me on GitHub

python深度学习之灾难求生预测(titanic)

问题描述

titanic讲的是在titanic灾难发生时,船上不同人的生还率。给出的训练集是一个csv文件,包含船上乘客的年龄,性别,船票位置,家庭成员关系等,然后最终的结果是二元分析,遇难或者生还,0或1。

分析训练集

开始先有个对数据集大致的印象,然后类似于数据库中的group by,分析一些重要特征对生还率的影响

def analize_data():
    print(train_df.columns.values)

    print(train_df.head())
    print(train_df.tail())
    # 描述字段类型和空值情况
    print(train_df.info())
    print('_' * 40)
    print(test_df.info())

    # 描述数据集的数学特征
    print(train_df.describe())
    print(train_df.describe(include=['O']))

    # 类似数据库处理,group by,order by
    print(train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived',
                                                                                                  ascending=False))
    print(train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived',
                                                                                            ascending=False))
    print(train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived',
                                                                                                ascending=False))
    print(train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived',
                                                                                                ascending=False))
analize_data()

通过图表分析数据

def data_analyze():
    # 相关性分析
    for x in data1_x:
        if data1[x].dtype != 'float64':
            print('Survival Correlation by:', x)
            print(data1[[x, Target[0]]].groupby(x, as_index=False).mean())
            print('-' * 10, '\n')

    print(pd.crosstab(data1['Title'], data1[Target[0]]))

    plt.figure(figsize=[16, 12])

    plt.subplot(231)
    plt.boxplot(x=data1['Fare'], showmeans=True, meanline=True)
    plt.title('Fare Boxplot')
    plt.ylabel('Fare ($)')

    plt.subplot(232)
    plt.boxplot(data1['Age'], showmeans=True, meanline=True)
    plt.title('Age Boxplot')
    plt.ylabel('Age (Years)')

    plt.subplot(233)
    plt.boxplot(data1['FamilySize'], showmeans=True, meanline=True)
    plt.title('Family Size Boxplot')
    plt.ylabel('Family Size (#)')

    plt.subplot(234)
    plt.hist(x=[data1[data1['Survived'] == 1]['Fare'], data1[data1['Survived'] == 0]['Fare']],
             stacked=True, color=['g', 'r'], label=['Survived', 'Dead'])
    plt.title('Fare Histogram by Survival')
    plt.xlabel('Fare ($)')
    plt.ylabel('# of Passengers')
    plt.legend()

    plt.subplot(235)
    plt.hist(x=[data1[data1['Survived'] == 1]['Age'], data1[data1['Survived'] == 0]['Age']],
             stacked=True, color=['g', 'r'], label=['Survived', 'Dead'])
    plt.title('Age Histogram by Survival')
    plt.xlabel('Age (Years)')
    plt.ylabel('# of Passengers')
    plt.legend()

    plt.subplot(236)
    plt.hist(x=[data1[data1['Survived'] == 1]['FamilySize'], data1[data1['Survived'] == 0]['FamilySize']],
             stacked=True, color=['g', 'r'], label=['Survived', 'Dead'])
    plt.title('Family Size Histogram by Survival')
    plt.xlabel('Family Size (#)')
    plt.ylabel('# of Passengers')
    plt.legend()

    # 总数
    plt.savefig('./output/relate.png')
    plt.show()

    fig, saxis = plt.subplots(2, 3, figsize=(16, 12))

    sns.barplot(x='Embarked', y='Survived', data=data1, ax=saxis[0, 0])
    sns.barplot(x='Pclass', y='Survived', order=[1, 2, 3], data=data1, ax=saxis[0, 1])
    sns.barplot(x='IsAlone', y='Survived', order=[1, 0], data=data1, ax=saxis[0, 2])

    sns.pointplot(x='FareBin', y='Survived', data=data1, ax=saxis[1, 0])
    sns.pointplot(x='AgeBin', y='Survived', data=data1, ax=saxis[1, 1])
    sns.pointplot(x='FamilySize', y='Survived', data=data1, ax=saxis[1, 2])

    # 概率
    plt.savefig('./output/probability.png')
    plt.show()

    fig, (axis1, axis2, axis3) = plt.subplots(1, 3, figsize=(14, 12))

    sns.boxplot(x='Pclass', y='Fare', hue='Survived', data=data1, ax=axis1)
    axis1.set_title('Pclass vs Fare Survival Comparison')

    sns.violinplot(x='Pclass', y='Age', hue='Survived', data=data1, split=True, ax=axis2)
    axis2.set_title('Pclass vs Age Survival Comparison')

    sns.boxplot(x='Pclass', y='FamilySize', hue='Survived', data=data1, ax=axis3)
    axis3.set_title('Pclass vs Family Size Survival Comparison')

    # 二元变量分析
    plt.savefig('./output/params.png')
    plt.show()

    a = sns.FacetGrid(data1, hue='Survived', aspect=4)
    a.map(sns.kdeplot, 'Age', shade=True)
    a.set(xlim=(0, data1['Age'].max()))
    a.add_legend()

    # 年龄
    plt.savefig('./output/age.png')
    plt.show()
data_analyze()

举其中年龄的一个例子。直观上的感受,在灾难面前,中年人的生还率一般比老人或者小孩更好。结合图表来看,在30岁左右的人生还率最高,和猜想基本吻合

参数相关性热力图

def correlation_heatmap(df):
    _, ax = plt.subplots(figsize=(14, 12))
    colormap = sns.diverging_palette(220, 10, as_cmap=True)

    _ = sns.heatmap(
        df.corr(),
        cmap=colormap,
        square=True,
        cbar_kws={'shrink': .9},
        ax=ax,
        annot=True,
        linewidths=0.1, vmax=1.0, linecolor='white',
        annot_kws={'fontsize': 12}
    )

    plt.title('Pearson Correlation of Features', y=1.05, size=15)

    plt.savefig('./output/heatmap.png')
    plt.show()
correlation_heatmap(df)
结合热力图,可以看出不同参数对生还率的影响不一样。比如Pclass的仓位类型,可能因为1等,2等,3等仓处在船上的不同位置,离逃生口的距离不一样,这个直接影响到灾难前的逃生。

建模

def model():
    # 逻辑回归
    logreg = LogisticRegression()
    logreg.fit(X_train, Y_train)
    Y_pred = logreg.predict(X_test)
    acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
    print("Logistic:" + str(acc_log))

    coeff_df = pd.DataFrame(train_df.columns.delete(0))
    coeff_df.columns = ['Feature']
    coeff_df["Correlation"] = pd.Series(logreg.coef_[0])

    print(coeff_df.sort_values(by='Correlation', ascending=False))

    # svm
    svc = SVC()
    svc.fit(X_train, Y_train)
    Y_pred = svc.predict(X_test)
    acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
    print("svm:" + str(acc_svc))

    # k-NN
    knn = KNeighborsClassifier(n_neighbors=3)
    knn.fit(X_train, Y_train)
    Y_pred = knn.predict(X_test)
    acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
    print("k-NN:" + str(acc_knn))

    #朴素贝叶斯
    gaussian = GaussianNB()
    gaussian.fit(X_train, Y_train)
    Y_pred = gaussian.predict(X_test)
    acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
    print("Bayes:"+str(acc_gaussian))

    #感知器
    perceptron = Perceptron()
    perceptron.fit(X_train, Y_train)
    Y_pred = perceptron.predict(X_test)
    acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
    print("perceptron:"+str(acc_perceptron))

    # 线性SVC
    linear_svc = LinearSVC()
    linear_svc.fit(X_train, Y_train)
    Y_pred = linear_svc.predict(X_test)
    acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
    print("SVC:"+str(acc_linear_svc))

    # 决策树
    decision_tree = DecisionTreeClassifier()
    decision_tree.fit(X_train, Y_train)
    Y_pred = decision_tree.predict(X_test)
    acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
    print("decision_tree:" + str(acc_decision_tree))

    # 随机森林
    random_forest = RandomForestClassifier(n_estimators=100)
    random_forest.fit(X_train, Y_train)
    Y_pred = random_forest.predict(X_test)
    random_forest.score(X_train, Y_train)
    acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
    print("random_forest:" + str(acc_random_forest))

    submission = pd.DataFrame({
        "PassengerId": test_df["PassengerId"],
        "Survived": Y_pred
    })

    submission.to_csv('./output/submission.csv', index=False)

model()

输出关键日志

svm:84.4
k-NN:85.52
Bayes:74.97
perceptron:80.36
SVC:81.14
decision_tree:89.11
random_forest:89.11

这里建模的过程,是调用knn,svc,随机森林等不同的模型,对数据建模,并比较准确率。最后发现决策树和随机森林的准确率最高,是89.11%。于是最后用随机森林对测试集进行预测。

kaggle上传预测集

完整代码下载

githup源码

posted on 2019-06-17 17:14  OneLi算法分享社区  阅读(472)  评论(0编辑  收藏  举报

导航