STREAMING HIVE流过滤 官网例子 注意中间用的py脚本
Simple Example Use Cases
MovieLens User Ratings
First, create a table with tab-delimited text file format:
CREATE TABLE u_data ( userid INT, movieid INT, rating INT, unixtime STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;
Then, download the data files from MovieLens 100k on the GroupLens datasets page (which also has a README.txt file and index of unzipped files):
wget http://files.grouplens.org/datasets/movielens/ml-100k.zip
or:
curl --remote-name http://files.grouplens.org/datasets/movielens/ml-100k.zip
Note: If the link to GroupLens datasets does not work, please report it on HIVE-5341 or send a message to the user@hive.apache.org mailing list.
Unzip the data files:
unzip ml-100k.zip
And load u.data
into the table that was just created:
LOAD DATA LOCAL INPATH '<path>/u.data' OVERWRITE INTO TABLE u_data;
Count the number of rows in table u_data:
SELECT COUNT(*) FROM u_data;
Note that for older versions of Hive which don't include HIVE-287, you'll need to use COUNT(1) in place of COUNT(*).
Now we can do some complex data analysis on the table u_data
:
Create weekday_mapper.py
:
import sys import datetime for line in sys.stdin: line = line.strip() userid, movieid, rating, unixtime = line.split('\t') weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print '\t'.join([userid, movieid, rating, str(weekday)])
https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-DDLOperations
Use the mapper script:
CREATE TABLE u_data_new ( userid INT, movieid INT, rating INT, weekday INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'; add FILE weekday_mapper.py; INSERT OVERWRITE TABLE u_data_new SELECT TRANSFORM (userid, movieid, rating, unixtime) USING 'python weekday_mapper.py' AS (userid, movieid, rating, weekday) FROM u_data; SELECT weekday, COUNT(*) FROM u_data_new GROUP BY weekday;