神经网络

神经网络术语

感知器:这个神经元输出(output) 0或者 1 是由这些输入的加权求和 jwjxj是否大于或者小于某一个阈值(threshold)

sigmoid神经元:就像感知器,sigmoid神经元有输入x1,x2,。但是输入值不仅是0或者1,还可以是01的任意值

输入层:神经网络的最左边一层

输出层:神经网络的最右边一层

隐含层:既不是输入层,也不是输出层。可以有多层隐含层

前向反馈神经网络:简称前馈神经网络。某一层的输出当作下一层的输入的神经网络。这意味着在网络中没有循环——信息总是向前反馈,决不向后

递归神经网络:具有循环反馈,比起前馈网络更加接近于我们人脑的工作方式

梯度下降学习算法:进行自我权重和偏差的学习

深度神经网络:有两个或更多“隐藏层”(hidden lyaers)的网络

神经网络详细介绍

https://zhuanlan.zhihu.com/p/35407734

http://www.tensorfly.cn/home/?p=80【推荐】

激活函数

Sigmoid函数总结

https://blog.csdn.net/wolfblood_zzx/article/details/74453434

激活函数的比较和优缺点,sigmoid,tanh,relu,softmax

https://blog.csdn.net/u011684265/article/details/78039280

https://www.cnblogs.com/alexanderkun/p/6918029.html

posted @ 2018-11-14 17:05  leon66666  阅读(991)  评论(0编辑  收藏  举报