基于C#的机器学习--目录

 转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223666.html 

 文章发表的另一个地址:https://blog.csdn.net/wyz19940328/article/details/85700819

目前国内关于机器学习的内容多是Python或者Go或者C++的,.NET平台下的多是使用封装好的工具包,而几乎没有关于如何使用C#实现的内容。目前有翻译版本的NET平台下的机器学习的书籍,不过却是F#语言的,没有C#。

目录

1.机器学习的基本知识

机器学习概论

数据采集

人工智能

生物-AI

深度学习

概率与统计

开始你的机器学习项目

数据收集

数据准备

选择与训练模型

评估模型

调教模型

鸢尾花数据集

机器学习中的分类

监督式学习

偏差及方差的权衡

培训的数据量

输入空间维数

不正确的输出值

数据的多样性

无监督式学习

强化学习

构建、购买或开源

总结

2.贝叶斯定理-执行数据分析解决肇事逃逸之谜

概述朴素贝叶斯和图形化数据

总结

3.惩罚与奖励-强化学习

强化学习概况

Q-learning

SARSA

运行我们的应用程序

汉诺塔游戏

总结

4.模糊逻辑-穿越障碍

模糊逻辑

模糊的自主移动小车

总结

5.颜色混合-自组织映射和弹性神经网络

在SOM引擎下

总结

6. 面部和动态检测-图像过滤器

人脸检测

动态检测

将检测添加到应用程序中

总结

7. 旅行推销员问题

旅行商问题

影响学习速率的参数

学习的有效范围

总结

8.我应该接受这份工作吗-使用决策树

决策树

决策节点

决策的变量

决策分支节点的集合

我应该接受这份工作吗?

Numl 

Accord.NET 决策树

代码

混合矩阵

真-阳性

真-阴性

假-阳性

假-阴性

回忆

精度

可视化错误类型

总结

9.深层信念网络

受限波尔兹曼机

分层

电脑在做梦?

总结

10. 微基准测试和激活功能

使用视觉绘图方法

策划所有功能

主函数

确定基准点

总结

11. c# .NET中直观的深度学习

什么是深度学习?

OpenCL

OpenCL 层级

Kelp.Net Framework

函数

函数栈

函数字典

Caffe1

Loss

优化程序

数据集

测验

监测Kelp.Net 

织布机

编写测试

基准测试函数

运行单个基准测试

总结

12. 机器学习建模的基础

  构建ML模型的步骤

13. 垃圾邮件过滤

定义问题

准备数据

数据分析

构建数据的特征

逻辑回归与朴素贝叶斯的Email垃圾邮件过滤

分类模型验证

总结

posted @ 2019-01-05 11:12  王振耀  阅读(3702)  评论(5编辑  收藏  举报