Machine learning(3-Linear Algebra Review )

1、Matrices and vectors

  • Matrix :Rectangular array of numbers

image.png

a notation R3×3

  • Vector : An n×1 matrix

image.png

this is a three dimensional vector , a notation R3

  • image.png

2、Addition and scalar multiplication

  • image.png
  • image.png
  • image.png

3、Matrix-vector multiplication

4、Matrix-matrix multiplication

  • Same as above

5、Matrix multiplication properties

  • No commutative A×B ≠ B×A (B is not identity matrix)
  • Yes associative (A×B)×C=A×(B×C)
  • image.png
  • For any matrix A, A×I = I×A = A

6、Inverse and transpose

  • Inverse :

we can use python to implement and for example :

from numpy import *

# 自行判断|A|≠0
# 求逆矩阵 ,建议:取小数点后一位化为分数

A = mat([[1, -1, 1],
         [1, 1, 0],
         [-1, 0, 1]])

B = A.I
print(B)

#  [ 0.33333333  0.33333333 -0.33333333]
#  [-0.33333333  0.66666667  0.33333333]
#  [ 0.33333333  0.33333333  0.66666667]
# 0.333≈ 1/3 ,0.667≈ 2/3
  • Transpose :

image.png

posted @ 2021-06-08 11:05  我在吃大西瓜呢  阅读(51)  评论(0编辑  收藏  举报