Machine learning(2-Linear regression with one variable )

1、Model representation

  • Our Training Set [训练集]:

image.png

  • We will start with this ‘’Housing price prediction‘’ example first of fitting linear functions, and we will build on this to eventually have more complex models

image.png

2、Cost function

  • 代价函数(平方误差函数):It figures out how to fit the best possible straight line to our data
  • So how to choose θi's ?

image.png

  • and just try:

image.png

  • The parameters we choose determine the accuracy of the straight line we get relative to our training set
  • But there is modeling error 建模误差

image.png

  • Our goal is to select the model parameters that minimize the sum of squares of modeling errors

  • That is to minimize the cost function!image.png

  • summary:

image.png

2-1、Cost function introduction I

  • We look up some plots to understand the cost function

image.png

2-2、Cost function introduction II

  • Let's take a look at the three-dimensional space diagram of the cost function(also called a convex function 凸函数)

image.png

  • And here is an example of a contour figure:

image.png

  • The contour figure is a more convenient way to visualize the cost function

3、Gradient descent

  • It turns out gradient descent(梯度下降) is a more general algorithm and is used not only in linear regression. I will introduce how to use gradient descent for minimizing some arbitrary function J
  • image.png
  • image.png
  • The formula of the batch gradient descent algorithm :

image.png

4、Gradient descent intuition

  • Derivative term purpose :get closer to the minimum

  • image.png

  • Learning rate α

image.png

  • But what if my parameter θ1 is already at a local minimum?
  • image.png
  • Gradient descent can converge to a local minimum, even with the learning rate α fixed
  • image.png

5、Gradient descent for linear regression

  • image.png

  • image.png

  • image.png

posted @ 2021-06-08 09:18  我在吃大西瓜呢  阅读(53)  评论(0编辑  收藏  举报