Machine learning(1-Introduction)

1、What is machine learning

  • Field of study that gives computers the ability to learn without being explicitly programmed

  • A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E

  • image.png

2、Supervised learning

  • One example :Housing price prediction

image.png

  • It refers to the fact that we give the algorithm a data set in which the ''right answers'' were given. (also called a regression problem 回归问题... Regression-> continuous valued output )

  • Just to produce more ''right answers''

  • The other example : Breast cancer

image.png

  • It refers to the fact that we give the algorithm to predict discrete set of output (Classification-> discrete valued output[0 or 1] 分类问题)
  • A learning algorithm can deal with not two or three features, but an infinite number of features
  • image.png

3、Unsupervised learning

  • We just tell the algorithm that here is a bunch of data ,but we don't know what is in this data,who is in what type and what the different types of this data . But the algorithm can automatically find the structure of this data and cluster the individuals into these types that we don't know in advance.(There is no "right answers" for machine)
  • Application:

image.png

  • A example: Cocktail party problem algorithm:

     [W,s, v]= svd((repmat(sum(x .* x, 1), size (x, 1), 1).* x) *x');
    
  • image.png

posted @ 2021-06-06 09:10  我在吃大西瓜呢  阅读(56)  评论(0编辑  收藏  举报