辅助多项式解决一些中值定理问题

开门见山吧,所谓辅助多项式即是当预证结论为“fn(ξ)=k”,且题干条件较多时,我们可以构造一个n项多项式P(x),使得P(x)满足题干中f(x)应该满足的条件,然后令F(x)=f(x)-P(x),再对F(x)使用多次罗尔定理即可!(注:n的取法)

1、例题

见到题目给出三个点我们很容易想到罗尔定理

却发现这三个点不相等,那么我们会立马想到泰勒定理

但在考研数学中不能直接使用导数介值定理(这里注意本题的题干[没给连续]),所以我们可以想到什么来规避它呢,今天新鲜学习,偷师凯哥,到手一招,非常实用!

构造辅助多项式:

2、真题

3、特殊情况

在汤神讲义中见到f、f、f'直接泰勒就行了,这里为了学习一种特殊情况,故延伸此题。

看结论,三次函数,但题干中只有3个条件,那么如何解4个参数呢?——给P(x)强加一个有用的约束!

构造函数:

为何要这样约束:

接下来有:

posted @ 2020-06-29 18:40  我在吃大西瓜呢  阅读(1641)  评论(0编辑  收藏  举报