简单LRU算法实现缓存
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
java 代码
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.LinkedHashMap;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- import java.util.Map;
- /**
- * 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
- *
- * @author dennis
- *
- * @param <K>
- * @param <V>
- */
- public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
- private final int maxCapacity;
- private static final float DEFAULT_LOAD_FACTOR = 0.75f;
- private final Lock lock = new ReentrantLock();
- public LRULinkedHashMap(int maxCapacity) {
- super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
- this.maxCapacity = maxCapacity;
- }
- @Override
- protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
- return size() > maxCapacity;
- }
- @Override
- public boolean containsKey(Object key) {
- try {
- lock.lock();
- return super.containsKey(key);
- } finally {
- lock.unlock();
- }
- }
- @Override
- public V get(Object key) {
- try {
- lock.lock();
- return super.get(key);
- } finally {
- lock.unlock();
- }
- }
- @Override
- public V put(K key, V value) {
- try {
- lock.lock();
- return super.put(key, value);
- } finally {
- lock.unlock();
- }
- }
- public int size() {
- try {
- lock.lock();
- return super.size();
- } finally {
- lock.unlock();
- }
- }
- public void clear() {
- try {
- lock.lock();
- super.clear();
- } finally {
- lock.unlock();
- }
- }
- public Collection<Map.Entry<K, V>> getAll() {
- try {
- lock.lock();
- return new ArrayList<Map.Entry<K, V>>(super.entrySet());
- } finally {
- lock.unlock();
- }
- }
- }
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入 的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种 算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于 MINI_ACESS时,就移除最久没有被访问的项:
java 代码
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.HashMap;
- import java.util.Iterator;
- import java.util.Map;
- import java.util.Set;
- import java.util.concurrent.atomic.AtomicInteger;
- import java.util.concurrent.atomic.AtomicLong;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- /**
- *
- * @author dennis
- * 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法
- * @param <K>
- * @param <V>
- */
- public class LRUCache<K, V> implements Serializable {
- private static final int DEFAULT_CAPACITY = 100;
- protected Map<K, ValueEntry> map;
- private final Lock lock = new ReentrantLock();
- private final transient int maxCapacity;
- private static int MINI_ACCESS = 10;
- public LRUCache() {
- this(DEFAULT_CAPACITY);
- }
- public LRUCache(int capacity) {
- if (capacity <= 0)
- throw new RuntimeException("缓存容量不得小于0");
- this.maxCapacity = capacity;
- this.map = new HashMap<K, ValueEntry>(maxCapacity);
- }
- public boolean ContainsKey(K key) {
- try {
- lock.lock();
- return this.map.containsKey(key);
- } finally {
- lock.unlock();
- }
- }
- public V put(K key, V value) {
- try {
- lock.lock();
- if ((map.size() > maxCapacity - 1) && !map.containsKey(key)) {
- // System.out.println("开始");
- Set<Map.Entry<K, ValueEntry>> entries = this.map.entrySet();
- removeRencentlyLeastAccess(entries);
- }
- ValueEntry valueEntry = map.put(key, new ValueEntry(value));
- if (valueEntry != null)
- return valueEntry.value;
- else
- return null;
- } finally {
- lock.unlock();
- }
- }
- /**
- * 移除最近最少访问
- */
- protected void removeRencentlyLeastAccess(
- Set<Map.Entry<K, ValueEntry>> entries) {
- // 最小使用次数
- int least = 0;
- // 最久没有被访问
- long earliest = 0;
- K toBeRemovedByCount = null;
- K toBeRemovedByTime = null;
- Iterator<Map.Entry<K, ValueEntry>> it = entries.iterator();
- if (it.hasNext()) {
- Map.Entry<K, ValueEntry> valueEntry = it.next();
- least = valueEntry.getValue().count.get();
- toBeRemovedByCount = valueEntry.getKey();
- earliest = valueEntry.getValue().lastAccess.get();
- toBeRemovedByTime = valueEntry.getKey();
- }
- while (it.hasNext()) {
- Map.Entry<K, ValueEntry> valueEntry = it.next();
- if (valueEntry.getValue().count.get() < least) {
- least = valueEntry.getValue().count.get();
- toBeRemovedByCount = valueEntry.getKey();
- }
- if (valueEntry.getValue().lastAccess.get() < earliest) {
- earliest = valueEntry.getValue().count.get();
- toBeRemovedByTime = valueEntry.getKey();
- }
- }
- // System.out.println("remove:" + toBeRemoved);
- // 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
- if (least > MINI_ACCESS) {
- map.remove(toBeRemovedByTime);
- } else {
- map.remove(toBeRemovedByCount);
- }
- }
- public V get(K key) {
- try {
- lock.lock();
- V value = null;
- ValueEntry valueEntry = map.get(key);
- if (valueEntry != null) {
- // 更新访问时间戳
- valueEntry.updateLastAccess();
- // 更新访问次数
- valueEntry.count.incrementAndGet();
- value = valueEntry.value;
- }
- return value;
- } finally {
- lock.unlock();
- }
- }
- public void clear() {
- try {
- lock.lock();
- map.clear();
- } finally {
- lock.unlock();
- }
- }
- public int size() {
- try {
- lock.lock();
- return map.size();
- } finally {
- lock.unlock();
- }
- }
- public Collection<Map.Entry<K, V>> getAll() {
- try {
- lock.lock();
- Set<K> keys = map.keySet();
- Map<K, V> tmp = new HashMap<K, V>();
- for (K key : keys) {
- tmp.put(key, map.get(key).value);
- }
- return new ArrayList<Map.Entry<K, V>>(tmp.entrySet());
- } finally {
- lock.unlock();
- }
- }
- class ValueEntry implements Serializable {
- private V value;
- private AtomicInteger count;
- private AtomicLong lastAccess;
- public ValueEntry(V value) {
- this.value = value;
- this.count = new AtomicInteger(0);
- lastAccess = new AtomicLong(System.nanoTime());
- }
- public void updateLastAccess() {
- this.lastAccess.set(System.nanoTime());
- }
- }
- }