简单LRU算法实现缓存

   最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:

java 代码
 
  1. import java.util.ArrayList;  
  2. import java.util.Collection;  
  3. import java.util.LinkedHashMap;  
  4. import java.util.concurrent.locks.Lock;  
  5. import java.util.concurrent.locks.ReentrantLock;  
  6. import java.util.Map;  
  7.   
  8.   
  9. /** 
  10.  * 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档 
  11.  *  
  12.  * @author dennis 
  13.  *  
  14.  * @param <K> 
  15.  * @param <V> 
  16.  */  
  17. public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {  
  18.     private final int maxCapacity;  
  19.   
  20.     private static final float DEFAULT_LOAD_FACTOR = 0.75f;  
  21.   
  22.     private final Lock lock = new ReentrantLock();  
  23.   
  24.     public LRULinkedHashMap(int maxCapacity) {  
  25.         super(maxCapacity, DEFAULT_LOAD_FACTOR, true);  
  26.         this.maxCapacity = maxCapacity;  
  27.     }  
  28.   
  29.     @Override  
  30.     protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {  
  31.         return size() > maxCapacity;  
  32.     }  
  33.     @Override  
  34.     public boolean containsKey(Object key) {  
  35.         try {  
  36.             lock.lock();  
  37.             return super.containsKey(key);  
  38.         } finally {  
  39.             lock.unlock();  
  40.         }  
  41.     }  
  42.   
  43.       
  44.     @Override  
  45.     public V get(Object key) {  
  46.         try {  
  47.             lock.lock();  
  48.             return super.get(key);  
  49.         } finally {  
  50.             lock.unlock();  
  51.         }  
  52.     }  
  53.   
  54.     @Override  
  55.     public V put(K key, V value) {  
  56.         try {  
  57.             lock.lock();  
  58.             return super.put(key, value);  
  59.         } finally {  
  60.             lock.unlock();  
  61.         }  
  62.     }  
  63.   
  64.     public int size() {  
  65.         try {  
  66.             lock.lock();  
  67.             return super.size();  
  68.         } finally {  
  69.             lock.unlock();  
  70.         }  
  71.     }  
  72.   
  73.     public void clear() {  
  74.         try {  
  75.             lock.lock();  
  76.             super.clear();  
  77.         } finally {  
  78.             lock.unlock();  
  79.         }  
  80.     }  
  81.   
  82.     public Collection<Map.Entry<K, V>> getAll() {  
  83.         try {  
  84.             lock.lock();  
  85.             return new ArrayList<Map.Entry<K, V>>(super.entrySet());  
  86.         } finally {  
  87.             lock.unlock();  
  88.         }  
  89.     }  
  90. }  
  91.     

  如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入 的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
    LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种 算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于 MINI_ACESS时,就移除最久没有被访问的项:
java 代码
 
  1. import java.io.Serializable;  
  2. import java.util.ArrayList;  
  3. import java.util.Collection;  
  4. import java.util.HashMap;  
  5. import java.util.Iterator;  
  6. import java.util.Map;  
  7. import java.util.Set;  
  8. import java.util.concurrent.atomic.AtomicInteger;  
  9. import java.util.concurrent.atomic.AtomicLong;  
  10. import java.util.concurrent.locks.Lock;  
  11. import java.util.concurrent.locks.ReentrantLock;  
  12.   
  13. /** 
  14.  *  
  15.  * @author dennis  
  16.  * 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法 
  17.  * @param <K> 
  18.  * @param <V> 
  19.  */  
  20. public class LRUCache<K, V> implements Serializable {  
  21.   
  22.     private static final int DEFAULT_CAPACITY = 100;  
  23.   
  24.     protected Map<K, ValueEntry> map;  
  25.   
  26.     private final Lock lock = new ReentrantLock();  
  27.   
  28.     private final transient int maxCapacity;  
  29.   
  30.     private static int MINI_ACCESS = 10;  
  31.   
  32.     public LRUCache() {  
  33.         this(DEFAULT_CAPACITY);  
  34.     }  
  35.   
  36.     public LRUCache(int capacity) {  
  37.         if (capacity <= 0)  
  38.             throw new RuntimeException("缓存容量不得小于0");  
  39.         this.maxCapacity = capacity;  
  40.         this.map = new HashMap<K, ValueEntry>(maxCapacity);  
  41.     }  
  42.   
  43.     public boolean ContainsKey(K key) {  
  44.         try {  
  45.             lock.lock();  
  46.             return this.map.containsKey(key);  
  47.         } finally {  
  48.             lock.unlock();  
  49.         }  
  50.     }  
  51.   
  52.     public V put(K key, V value) {  
  53.         try {  
  54.             lock.lock();  
  55.             if ((map.size() > maxCapacity - 1) && !map.containsKey(key)) {  
  56.                 // System.out.println("开始");  
  57.                 Set<Map.Entry<K, ValueEntry>> entries = this.map.entrySet();  
  58.                 removeRencentlyLeastAccess(entries);  
  59.             }  
  60.             ValueEntry valueEntry = map.put(key, new ValueEntry(value));  
  61.             if (valueEntry != null)  
  62.                 return valueEntry.value;  
  63.             else  
  64.                 return null;  
  65.         } finally {  
  66.             lock.unlock();  
  67.         }  
  68.     }  
  69.   
  70.     /** 
  71.      * 移除最近最少访问 
  72.      */  
  73.     protected void removeRencentlyLeastAccess(  
  74.             Set<Map.Entry<K, ValueEntry>> entries) {  
  75.         // 最小使用次数  
  76.         int least = 0;  
  77.         // 最久没有被访问  
  78.         long earliest = 0;  
  79.         K toBeRemovedByCount = null;  
  80.         K toBeRemovedByTime = null;  
  81.         Iterator<Map.Entry<K, ValueEntry>> it = entries.iterator();  
  82.         if (it.hasNext()) {  
  83.             Map.Entry<K, ValueEntry> valueEntry = it.next();  
  84.             least = valueEntry.getValue().count.get();  
  85.             toBeRemovedByCount = valueEntry.getKey();  
  86.             earliest = valueEntry.getValue().lastAccess.get();  
  87.             toBeRemovedByTime = valueEntry.getKey();  
  88.         }  
  89.         while (it.hasNext()) {  
  90.             Map.Entry<K, ValueEntry> valueEntry = it.next();  
  91.             if (valueEntry.getValue().count.get() < least) {  
  92.                 least = valueEntry.getValue().count.get();  
  93.                 toBeRemovedByCount = valueEntry.getKey();  
  94.             }  
  95.             if (valueEntry.getValue().lastAccess.get() < earliest) {  
  96.                 earliest = valueEntry.getValue().count.get();  
  97.                 toBeRemovedByTime = valueEntry.getKey();  
  98.             }  
  99.         }  
  100.         // System.out.println("remove:" + toBeRemoved);  
  101.         // 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)  
  102.         if (least > MINI_ACCESS) {  
  103.             map.remove(toBeRemovedByTime);  
  104.         } else {  
  105.             map.remove(toBeRemovedByCount);  
  106.         }  
  107.     }  
  108.   
  109.     public V get(K key) {  
  110.         try {  
  111.             lock.lock();  
  112.             V value = null;  
  113.             ValueEntry valueEntry = map.get(key);  
  114.             if (valueEntry != null) {  
  115.                 // 更新访问时间戳  
  116.                 valueEntry.updateLastAccess();  
  117.                 // 更新访问次数  
  118.                 valueEntry.count.incrementAndGet();  
  119.                 value = valueEntry.value;  
  120.             }  
  121.             return value;  
  122.         } finally {  
  123.             lock.unlock();  
  124.         }  
  125.     }  
  126.   
  127.     public void clear() {  
  128.         try {  
  129.             lock.lock();  
  130.             map.clear();  
  131.         } finally {  
  132.             lock.unlock();  
  133.         }  
  134.     }  
  135.   
  136.     public int size() {  
  137.         try {  
  138.             lock.lock();  
  139.             return map.size();  
  140.         } finally {  
  141.             lock.unlock();  
  142.         }  
  143.     }  
  144.   
  145.     public Collection<Map.Entry<K, V>> getAll() {  
  146.         try {  
  147.             lock.lock();  
  148.             Set<K> keys = map.keySet();  
  149.             Map<K, V> tmp = new HashMap<K, V>();  
  150.             for (K key : keys) {  
  151.                 tmp.put(key, map.get(key).value);  
  152.             }  
  153.             return new ArrayList<Map.Entry<K, V>>(tmp.entrySet());  
  154.         } finally {  
  155.             lock.unlock();  
  156.         }  
  157.     }  
  158.   
  159.     class ValueEntry implements Serializable {  
  160.         private V value;  
  161.   
  162.         private AtomicInteger count;  
  163.   
  164.         private AtomicLong lastAccess;  
  165.   
  166.         public ValueEntry(V value) {  
  167.             this.value = value;  
  168.             this.count = new AtomicInteger(0);  
  169.             lastAccess = new AtomicLong(System.nanoTime());  
  170.         }  
  171.           
  172.         public void updateLastAccess() {  
  173.             this.lastAccess.set(System.nanoTime());  
  174.         }  
  175.   
  176.     }  
  177. }  
posted @ 2015-03-06 13:54  LOVE SHARE  阅读(268)  评论(0编辑  收藏  举报