Django ORM操作及进阶

一、常规操作

必知必会13条

<1> all():                 查询所有结果
 
<2> filter(**kwargs):      它包含了与所给筛选条件相匹配的对象
 
<3> get(**kwargs):         返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。
 
<4> exclude(**kwargs):     它包含了与所给筛选条件不匹配的对象
 
<5> values(*field):        返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列model的实例化对象,而是一个可迭代的字典序列
 
<6> values_list(*field):   它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列
 
<7> order_by(*field):      对查询结果排序
 
<8> reverse():             对查询结果反向排序,请注意reverse()通常只能在具有已定义顺序的QuerySet上调用(在model类的Meta中指定ordering或调用order_by()方法)。
 
<9> distinct():            从返回结果中剔除重复纪录(如果你查询跨越多个表,可能在计算QuerySet时得到重复的结果。此时可以使用distinct(),注意只有在PostgreSQL中支持按字段去重。)
 
<10> count():              返回数据库中匹配查询(QuerySet)的对象数量。
 
<11> first():              返回第一条记录
 
<12> last():               返回最后一条记录
 
<13> exists():             如果QuerySet包含数据,就返回True,否则返回False

  1. 返回QuerySet对象的方法有

    all()

    filter()

    exclude()

    order_by()

    reverse()

    distinct()


  2. 特殊的QuerySet

    values() 返回一个可迭代的字典序列

    values_list() 返回一个可迭代的元祖序列


  3. 返回具体对象的

    get()

    first()

    last()


  4. 返回布尔值的方法有:

    exists()


  5. 返回数字的方法有

    count()


单表查询之神奇的双下划线

models.Tb1.objects.filter(id__lt=10, id__gt=1)   # 获取id大于1 且 小于10的值
 
models.Tb1.objects.filter(id__in=[11, 22, 33])   # 获取id等于11、22、33的数据
models.Tb1.objects.exclude(id__in=[11, 22, 33])  # not in
 
models.Tb1.objects.filter(name__contains="ven")  # 获取name字段包含"ven"的
models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感
 
models.Tb1.objects.filter(id__range=[1, 3])      # id范围是1到3的,等价于SQL的bettwen and
 
类似的还有:startswith,istartswith, endswith, iendswith 

date字段还可以:
models.Class.objects.filter(first_day__year=2017)

二、ForeignKey操作

正向查找

  1. 对象查找(跨表)

    语法:

    对象.关联字段.字段

    示例:

    book_obj = models.Book.objects.first()  # 第一本书对象
    print(book_obj.publisher)  # 得到这本书关联的出版社对象
    print(book_obj.publisher.name)  # 得到出版社对象的名称
    

  2. 字段查找(跨表)

    语法:

    对象.关联字段.字段

    示例:

    print(models.Book.objects.values_list("publisher__name"))
    

反向操作

  1. 对象查找

    语法:

    obj.表名_set

    示例:

    publisher_obj = models.Publisher.objects.first()  # 找到第一个出版社对象
    books = publisher_obj.book_set.all()  # 找到第一个出版社出版的所有书
    titles = books.values_list("title")  # 找到第一个出版社出版的所有书的书名
    

  2. 字段查找

    语法:

    表名__字段

    示例:

    titles = models.Publisher.objects.values_list("book__title")
    

三、ManyToManyField

class RelatedManager

"关联管理器"是在一对多或者多对多的关联上下文中使用的管理器。

它存在于下面两种情况:

  1. 外键关系的反向查询
  2. 多对多关联关系

简单来说就是当 点后面的对象 可能存在多个的时候就可以使用以下的方法。

  1. 方法

    create()

    创建一个新的对象,保存对象,并将它添加到关联对象集之中,返回新创建的对象。

    >>> import datetime
    >>> models.Author.objects.first().book_set.create(title="番茄物语", publish_date=datetime.date.today())
    

    add()

    把指定的model对象添加到关联对象集中。

    添加对象

    >>> author_objs = models.Author.objects.filter(id__lt=3)
    >>> models.Book.objects.first().authors.add(*author_objs)
    

    添加id

    >>> models.Book.objects.first().authors.add(*[1, 2])
    

    set()

    更新model对象的关联对象。

    >>> book_obj = models.Book.objects.first()
    >>> book_obj.authors.set([2, 3])
    

    remove()

    从关联对象集中移除执行的model对象

    >>> book_obj = models.Book.objects.first()
    >>> book_obj.authors.remove(3)
    

    clear()

    从关联对象集中移除一切对象。

    >>> book_obj = models.Book.objects.first()
    >>> book_obj.authors.clear()
    

    注意:

    对于ForeignKey对象,clear()和remove()方法仅在null=True时存在。

    举个例子:

    ForeignKey字段没设置null=True时,

    class Book(models.Model):
        title = models.CharField(max_length=32)
        publisher = models.ForeignKey(to=Publisher)
    

    没有clear()和remove()方法:

    >>> models.Publisher.objects.first().book_set.clear()
    Traceback (most recent call last):
      File "<input>", line 1, in <module>
    AttributeError: 'RelatedManager' object has no attribute 'clear'
    

    当ForeignKey字段设置null=True时,

    class Book(models.Model):
        name = models.CharField(max_length=32)
        publisher = models.ForeignKey(to=Class, null=True)
    

    此时就有clear()和remove()方法:

    >>> models.Publisher.objects.first().book_set.clear()
    

    注意:

    1. 对于所有类型的关联字段,add()、create()、remove()和clear(),set()都会马上更新数据库。换句话说,在关联的任何一端,都不需要再调用save()方法。

补充

  1. 基于双下划线的跨表查询

    Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的 model 为止。

    关键点:正向查询按字段,反向查询按表明。

    # 练习1:  查询人民出版社出版过的所有书籍的名字与价格(一对多)
    
        # 正向查询 按字段:publish
    
        queryResult=Book.objects
                .filter(publish__name="人民出版社")
                .values_list("title","price")
    
        # 反向查询 按表名:book
    
        queryResult=Publish.objects
                  .filter(name="人民出版社")
                  .values_list("book__title","book__price")
    
    
    
    # 练习2: 查询egon出过的所有书籍的名字(多对多)
    
        # 正向查询 按字段:authors:
        queryResult=Book.objects
                .filter(authors__name="yuan")
                .values_list("title")
    
        # 反向查询 按表名:book
        queryResult=Author.objects
                  .filter(name="yuan")
                  .values_list("book__title","book__price")
    
    
    # 练习3: 查询人民出版社出版过的所有书籍的名字以及作者的姓名
    
    
        # 正向查询
        queryResult=Book.objects
                .filter(publish__name="人民出版社")
                .values_list("title","authors__name")
        # 反向查询
        queryResult=Publish.objects
                  .filter(name="人民出版社")
                  .values_list("book__title","book__authors__age","book__authors__name")
    
    
    # 练习4: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称
    
        queryResult=Book.objects
                .filter(authors__authorDetail__telephone__regex="151")
                .values_list("title","publish__name")
    

    注意:

    反向查询时,如果定义了related_name ,则用related_name替换表名,例如: publish = ForeignKey(Blog, related_name='bookList'):

    # 练习1:  查询人民出版社出版过的所有书籍的名字与价格(一对多)
     
        # 反向查询 不再按表名:book,而是related_name:bookList
     
        queryResult=Publish.objects
                  .filter(name="人民出版社")
                  .values_list("bookList__title","bookList__price")
    

五、F查询和Q查询

F查询

在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?

Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。

示例1:

查询评论数大于收藏数的书籍

from django.db.models import F
models.Book.objects.filter(commnet_num__gt=F('keep_num'))

Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。

models.Book.objects.filter(commnet_num__lt=F('keep_num')*2)

修改操作也可以使用F函数,比如将每一本书的价格提高30元

models.Book.objects.all().update(price=F("price")+30)

引申:

如果要修改char字段咋办?

如:把所有书名后面加上(第一版)

>>> from django.db.models.functions import Concat
>>> from django.db.models import Value
>>> models.Book.objects.all().update(title=Concat(F("title"), Value("("), Value("第一版"), Value(")")))

四、聚合查询和分组查询

聚合

aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。

键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。

用到的内置函数:

from django.db.models import Avg, Sum, Max, Min, Count

示例:

>>> from django.db.models import Avg, Sum, Max, Min, Count
>>> models.Book.objects.all().aggregate(Avg("price"))
{'price__avg': 13.233333}

如果你想要为聚合值指定一个名称,可以向聚合子句提供它。

>>> models.Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 13.233333}

如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:

>>> models.Book.objects.all().aggregate(Avg("price"), Max("price"), Min("price"))
{'price__avg': 13.233333, 'price__max': Decimal('19.90'), 'price__min': Decimal('9.90')}

分组

假设现在有一张公司职员表:

我们使用原生SQL语句,按照部分分组求平均工资:

select dept,AVG(salary) from employee group by dept;

ORM查询:

from django.db.models import Avg
Employee.objects.values("dept").annotate(avg=Avg("salary").values(dept, "avg")

连表查询的分组:

SQL查询:

select dept.name,AVG(salary) from employee inner join dept on (employee.dept_id=dept.id) group by dept_id;

ORM查询:

from django.db.models import Avg
models.Dept.objects.annotate(avg=Avg("employee__salary")).values("name", "avg")

更多示例

示例1:统计每一本书的作者个数

>>> book_list = models.Book.objects.all().annotate(author_num=Count("author"))
>>> for obj in book_list:
...     print(obj.author_num)
...
2
1
1

示例2:统计出每个出版社卖的最便宜的书的价格

>>> publisher_list = models.Publisher.objects.annotate(min_price=Min("book__price"))
>>> for obj in publisher_list:
...     print(obj.min_price)
...     
9.90
19.90

方法二:

>>> models.Book.objects.values("publisher__name").annotate(min_price=Min("price"))
<QuerySet [{'publisher__name': '沙河出版社', 'min_price': Decimal('9.90')}, {'publisher__name': '人民出版社', 'min_price': Decimal('19.90')}]>

示例3:统计不止一个作者的图书

>>> models.Book.objects.annotate(author_num=Count("author")).filter(author_num__gt=1)
<QuerySet [<Book: 番茄物语>]>

示例4:根据一本图书作者数量的多少对查询集 QuerySet进行排序

>>> models.Book.objects.annotate(author_num=Count("author")).order_by("author_num")
<QuerySet [<Book: 香蕉物语>, <Book: 橘子物语>, <Book: 番茄物语>]>

示例5:查询各个作者出的书的总价格

>>> models.Author.objects.annotate(sum_price=Sum("book__price")).values("name", "sum_price")
<QuerySet [{'name': '小精灵', 'sum_price': Decimal('9.90')}, {'name': '小仙女', 'sum_price': Decimal('29.80')}, {'name': '小魔女', 'sum_price': Decimal('9.90')}]>

Q查询

filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR语句),你可以使用Q对象。

示例1:

查询作者名是小仙女或小魔女的

models.Book.objects.filter(Q(authors__name="小仙女")|Q(authors__name="小魔女"))

你可以组合& 和 | 操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询。

示例:查询作者名字是小仙女并且不是2018年出版的书的书名。

>>> models.Book.objects.filter(Q(author__name="小仙女") & ~Q(publish_date__year=2018)).values_list("title")
<QuerySet [('番茄物语',)]>

查询函数可以混合使用Q对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。

例如:查询出版年份是2017或2018,书名中带物语的所有书。

>>> models.Book.objects.filter(Q(publish_date__year=2018) | Q(publish_date__year=2017), title__icontains="物语")
<QuerySet [<Book: 番茄物语>, <Book: 香蕉物语>, <Book: 橘子物语>]>

六、锁和事务

select_for_update(nowait=False, skip_locked=False)

返回一个锁住行直到事务结束的查询集,如果数据库支持,它将生成一个 SELECT ... FOR UPDATE 语句。

举个例子:

entries = Entry.objects.select_for_update().filter(author=request.user)

所有匹配的行将被锁定,直到事务结束。这意味着可以通过锁防止数据被其它事务修改。

一般情况下如果其他事务锁定了相关行,那么本查询将被阻塞,直到锁被释放。 如果这不想要使查询阻塞的话,使用select_for_update(nowait=True)。 如果其它事务持有冲突的锁, 那么查询将引发 DatabaseError 异常。你也可以使用select_for_update(skip_locked=True)忽略锁定的行。 nowait和skip_locked是互斥的,同时设置会导致ValueError。

目前,postgresql,oracle和mysql数据库后端支持select_for_update()。 但是,MySQL不支持nowait和skip_locked参数。

使用不支持这些选项的数据库后端(如MySQL)将nowait=True或skip_locked=True转换为select_for_update()将导致抛出DatabaseError异常,这可以防止代码意外终止。


事务

import os

if __name__ == '__main__':
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
    import django
    django.setup()

    import datetime
    from app01 import models

    try:
        from django.db import transaction
        with transaction.atomic():
            new_publisher = models.Publisher.objects.create(name="火星出版社")
            models.Book.objects.create(title="橘子物语", publish_date=datetime.date.today(), publisher_id=10)  # 指定一个不存在的出版社id
    except Exception as e:
        print(str(e))

七、其他鲜为人知的操作

Django ORM执行原生SQL

在模型查询API不够用的情况下,我们还可以使用原始的SQL语句进行查询。

Django 提供两种方法使用原始SQL进行查询:一种是使用raw()方法,进行原始SQL查询并返回模型实例;另一种是完全避开模型层,直接执行自定义的SQL语句。

  1. 执行原生查询

    raw()管理器方法用于原始的SQL查询,并返回模型的实例:

    注意:raw()语法查询必须包含主键。

    这个方法执行原始的SQL查询,并返回一个django.db.models.query.RawQuerySet 实例。 这个RawQuerySet 实例可以像一般的QuerySet那样,通过迭代来提供对象实例。

    举个例子:

    class Person(models.Model):
        first_name = models.CharField(...)
        last_name = models.CharField(...)
        birth_date = models.DateField(...)
    

    可以像下面这样执行原生SQL语句

    >>> for p in Person.objects.raw('SELECT * FROM myapp_person'):
    ...     print(p)
    

    raw()查询可以查询其他表的数据。

    举个例子:

    ret = models.Student.objects.raw('select id, tname as hehe from app02_teacher')
        for i in ret:
            print(i.id, i.hehe)
    

    raw()方法自动将查询字段映射到模型字段。还可以通过translations参数指定一个把查询的字段名和ORM对象实例的字段名互相对应的字典

    d = {'tname': 'haha'}
        ret = models.Student.objects.raw('select * from app02_teacher', translations=d)
        for i in ret:
            print(i.id, i.sname, i.haha)
    

    原生SQL还可以使用参数,注意不要自己使用字符串格式化拼接SQL语句,防止SQL注入!

    d = {'tname': 'haha'}
        ret = models.Student.objects.raw('select * from app02_teacher where id > %s', translations=d, params=[1,])
        for i in ret:
            print(i.id, i.sname, i.haha)
    

  2. 直接执行自定义SQL

    有时候raw()方法并不十分好用,很多情况下我们不需要将查询结果映射成模型,或者我们需要执行DELETE、 INSERT以及UPDATE操作。在这些情况下,我们可以直接访问数据库,完全避开模型层。

    我们可以直接从django提供的接口中获取数据库连接,然后像使用pymysql模块一样操作数据库。

    from django.db import connection, connections
    cursor = connection.cursor()  # cursor = connections['default'].cursor()
    cursor.execute("""SELECT * from auth_user where id = %s""", [1])
    ret = cursor.fetchone()
    

QuerySet方法大全

#################################
# PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET #
#################################

def all(self)
    # 获取所有的数据对象

def filter(self, *args, **kwargs)
    # 条件查询
    # 条件可以是:参数,字典,Q

def exclude(self, *args, **kwargs)
    # 条件查询
    # 条件可以是:参数,字典,Q

def select_related(self, *fields)
    性能相关:表之间进行join连表操作,一次性获取关联的数据。

    总结:
    1. select_related主要针一对一和多对一关系进行优化。
    2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。

def prefetch_related(self, *lookups)
    性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。

    总结:
    1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
    2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。

def annotate(self, *args, **kwargs)
    # 用于实现聚合group by查询

    from django.db.models import Count, Avg, Max, Min, Sum

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
    # SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
    # SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
    # SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

def distinct(self, *field_names)
    # 用于distinct去重
    models.UserInfo.objects.values('nid').distinct()
    # select distinct nid from userinfo

    注:只有在PostgreSQL中才能使用distinct进行去重

def order_by(self, *field_names)
    # 用于排序
    models.UserInfo.objects.all().order_by('-id','age')

def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
    # 构造额外的查询条件或者映射,如:子查询

    Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
    Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
    Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
    Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

 def reverse(self):
    # 倒序
    models.UserInfo.objects.all().order_by('-nid').reverse()
    # 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序


 def defer(self, *fields):
    models.UserInfo.objects.defer('username','id')
    或
    models.UserInfo.objects.filter(...).defer('username','id')
    #映射中排除某列数据

 def only(self, *fields):
    #仅取某个表中的数据
     models.UserInfo.objects.only('username','id')
     或
     models.UserInfo.objects.filter(...).only('username','id')

 def using(self, alias):
     指定使用的数据库,参数为别名(setting中的设置)


#########################
# PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS #
#########################

def raw(self, raw_query, params=None, translations=None, using=None):
    # 执行原生SQL
    models.UserInfo.objects.raw('select * from userinfo')

    # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
    models.UserInfo.objects.raw('select id as nid from 其他表')

    # 为原生SQL设置参数
    models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,])

    # 将获取的到列名转换为指定列名
    name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
    Person.objects.raw('SELECT * FROM some_other_table', translations=name_map)

    # 指定数据库
    models.UserInfo.objects.raw('select * from userinfo', using="default")

    ########## 原生SQL ##########
    from django.db import connection, connections
    cursor = connection.cursor()  # cursor = connections['default'].cursor()
    cursor.execute("""SELECT * from auth_user where id = %s""", [1])
    row = cursor.fetchone() # fetchall()/fetchmany(..)


def values(self, *fields):
    # 获取每行数据为字典格式

def values_list(self, *fields, **kwargs):
    # 获取每行数据为元祖

def dates(self, field_name, kind, order='ASC'):
    # 根据时间进行某一部分进行去重查找并截取指定内容
    # kind只能是:"year"(年), "month"(年-月), "day"(年-月-日)
    # order只能是:"ASC"  "DESC"
    # 并获取转换后的时间
        - year : 年-01-01
        - month: 年-月-01
        - day  : 年-月-日

    models.DatePlus.objects.dates('ctime','day','DESC')

def datetimes(self, field_name, kind, order='ASC', tzinfo=None):
    # 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间
    # kind只能是 "year", "month", "day", "hour", "minute", "second"
    # order只能是:"ASC"  "DESC"
    # tzinfo时区对象
    models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC)
    models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai'))

    """
    pip3 install pytz
    import pytz
    pytz.all_timezones
    pytz.timezone(‘Asia/Shanghai’)
    """

def none(self):
    # 空QuerySet对象


##################
# METHODS THAT DO DATABASE QUERIES #
##################

def aggregate(self, *args, **kwargs):
   # 聚合函数,获取字典类型聚合结果
   from django.db.models import Count, Avg, Max, Min, Sum
   result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid'))
   ===> {'k': 3, 'n': 4}

def count(self):
   # 获取个数

def get(self, *args, **kwargs):
   # 获取单个对象

def create(self, **kwargs):
   # 创建对象

def bulk_create(self, objs, batch_size=None):
    # 批量插入
    # batch_size表示一次插入的个数
    objs = [
        models.DDD(name='r11'),
        models.DDD(name='r22')
    ]
    models.DDD.objects.bulk_create(objs, 10)

def get_or_create(self, defaults=None, **kwargs):
    # 如果存在,则获取,否则,创建
    # defaults 指定创建时,其他字段的值
    obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 2})

def update_or_create(self, defaults=None, **kwargs):
    # 如果存在,则更新,否则,创建
    # defaults 指定创建时或更新时的其他字段
    obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 1})

def first(self):
   # 获取第一个

def last(self):
   # 获取最后一个

def in_bulk(self, id_list=None):
   # 根据主键ID进行查找
   id_list = [11,21,31]
   models.DDD.objects.in_bulk(id_list)

def delete(self):
   # 删除

def update(self, **kwargs):
    # 更新

def exists(self):
   # 是否有结果

QuerySet方法大全

八、Django终端打印SQL语句

在Django项目的settings.py文件中,在最后复制粘贴如下代码:

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'handlers': {
        'console':{
            'level':'DEBUG',
            'class':'logging.StreamHandler',
        },
    },
    'loggers': {
        'django.db.backends': {
            'handlers': ['console'],
            'propagate': True,
            'level':'DEBUG',
        },
    }
}

即为你的Django项目配置上一个名为django.db.backends的logger实例即可查看翻译后的SQL语句。


九、在Python脚本中调用Django环境

import os

if __name__ == '__main__':
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
    import django
    django.setup()

    from app01 import models

    books = models.Book.objects.all()
    print(books)



posted @ 2019-08-05 12:03  与鹿逐秋  阅读(298)  评论(0编辑  收藏  举报