Django之models之查询表
单表查询
查询相关API:
<1> all(): 查询所有结果 # 返回的QuerySet类型 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 #返回的QuerySet类型 <3> get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个, #返回的models对象 如果符合筛选条件的对象超过一个或者没有都会抛出错误。 <5> exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象 #返回的QuerySet类型 <4> values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列 #返回的QuerySet类型 model的实例化对象,而是一个可迭代的字典序列 <9> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列 #返回的QuerySet类型 <6> order_by(*field): 对查询结果排序 <7> reverse(): 对查询结果反向排序 <8> distinct(): 从返回结果中剔除重复纪录 <10> count(): 返回数据库中匹配查询(QuerySet)的对象数量。 <11> first(): 返回第一条记录 #返回的models对象
<12> last(): 返回最后一条记录 #返回的models对象
<13> exists(): 如果QuerySet包含数据,就返回True,否则返回False
双下划线之单表查询
models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据 models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in models.Tb1.objects.filter(name__contains="ven") models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 models.Tb1.objects.filter(id__range=[1, 2]) # 范围bettwen and startswith,istartswith, endswith, iendswith
基于对象的跨表查询(使用的是sql中的子查询语句)
一对多查询(Publish 与 Book)
正向查询(按字段:publish):
# 查询nid=1的书籍的出版社所在的城市 book_obj=Book.objects.get(nid=1)
print(book_obj.publish.city) # book_obj.publish 是nid=1的书籍对象关联的出版社对象
反向查询(按表名:book_set):
# 查询 人民出版社出版过的所有书籍 publish=Publish.objects.get(name="人民出版社") book_list=publish.book_set.all() # 与人民出版社关联的所有书籍对象集合 for book_obj in book_list: print(book_obj.title)
总结:
对于正向查询来说,使用子查询直接 点(.)自己类属性就可以关联到对应的出版社对象
对于反向查询来说,使用需要,点(.)所要查询的模型名加上双下划set ( 类名__set )
什么是正向? 什么是反向?
正向就是你查询的基表有外键字段,那么就是正向的,反之就是反向
一对一查询(Author 与 AuthorDetail)
正向查询(按字段:authorDetail):
# 查询egon作者的手机号 author_egon=Author.objects.get(name="egon") print(author_egon.authorDetail.telephone)
反向查询(按表名:author):
# 查询所有住址在北京的作者的姓名 authorDetail_list=AuthorDetail.objects.filter(addr="beijing") for obj in authorDetail_list: print(obj.author.name)
多对多查询 (Author 与 Book)
正向查询(按字段:authors):
# 金瓶眉所有作者的名字以及手机号 book_obj=Book.objects.filter(title="金瓶眉").first() authors=book_obj.authors.all() for author_obj in authors: print(author_obj.name,author_obj.authorDetail.telephone)
反向查询(按表名:book_set):
# 查询egon出过的所有书籍的名字 author_obj=Author.objects.get(name="egon") book_list=author_obj.book_set.all() #与egon作者相关的所有书籍 for book_obj in book_list: print(book_obj.title)
注意:
你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。例如,如果 Article model 中做一下更改: publish = ForeignKey(Blog, related_name='bookList'),那么接下来就会如我们看到这般:
# 查询 人民出版社出版过的所有书籍 publish=Publish.objects.get(name="人民出版社") book_list=publish.bookList.all() # 与人民出版社关联的所有书籍对象集合
基于双下划线的跨表查询 ( join查询 )
Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的 model 为止。
关键点:正向查询按字段,反向查询按表名。
# 练习1: 查询人民出版社出版过的所有书籍的名字与价格(一对多) # 正向查询 按字段:publish queryResult=Book.objects .filter(publish__name="人民出版社") .values_list("title","price") # 反向查询 按表名:book queryResult=Publish.objects .filter(name="人民出版社") .values_list("book__title","book__price") # 练习2: 查询egon出过的所有书籍的名字(多对多) # 正向查询 按字段:authors: queryResult=Book.objects .filter(authors__name="yuan") .values_list("title") # 反向查询 按表名:book queryResult=Author.objects .filter(name="yuan") .values_list("book__title","book__price") # 练习3: 查询人民出版社出版过的所有书籍的名字以及作者的姓名 # 正向查询 queryResult=Book.objects .filter(publish__name="人民出版社") .values_list("title","authors__name") # 反向查询 queryResult=Publish.objects .filter(name="人民出版社") .values_list("book__title","book__authors__age","book__authors__name") # 练习4: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称 queryResult=Book.objects .filter(authors__authorDetail__telephone__regex="151") .values_list("title","publish__name")
注意:
反向查询时,如果定义了related_name ,则用related_name替换表名,例如: publish = ForeignKey(Blog, related_name='bookList'):
# 练习1: 查询人民出版社出版过的所有书籍的名字与价格(一对多) # 反向查询 不再按表名:book,而是related_name:bookList queryResult=Publish.objects .filter(name="人民出版社") .values_list("bookList__title","bookList__price")
聚合查询与分组查询
聚合:aggregate(*args, **kwargs)
# 计算所有图书的平均价格 >>> from django.db.models import Avg >>> Book.objects.all().aggregate(Avg('price')) {'price__avg': 34.35}
aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定一个名称,可以向聚合子句提供它
>>> Book.objects.aggregate(average_price=Avg('price')) {'average_price': 34.35}
如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:
>>> from django.db.models import Avg, Max, Min >>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price')) {'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}
分组:annotate()
为调用的QuerySet中每一个对象都生成一个独立的统计值(统计方法用聚合函数)。
统计每一本书的作者个数
bookList=Book.objects.annotate(authorsNum=Count('authors')) for book_obj in bookList: print(book_obj.title,book_obj.authorsNum)
统计每一个出版社的最便宜的书
publishList=Publish.objects.annotate(MinPrice=Min("book__price")) for publish_obj in publishList: print(publish_obj.name,publish_obj.MinPrice)
根据一本图书作者数量的多少对查询集 QuerySet进行排序:
Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')
F查询与Q查询
F查询
在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。
# 查询评论数大于收藏数的书籍 from django.db.models import F Book.objects.filter(commnetNum__lt=F('keepNum'))
Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。
# 查询评论数大于收藏数2倍的书籍 Book.objects.filter(commnetNum__lt=F('keepNum')*2)
修改操作也可以使用F函数,比如将每一本书的价格提高30元:
Book.objects.all().update(price=F("price")+30)
Q查询
filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR 语句),你可以使用Q 对象。
from django.db.models import Q Q(title__startswith='Py')
Q 对象可以使用& 和| 操作符组合起来。当一个操作符在两个Q 对象上使用时,它产生一个新的Q 对象。
bookList=Book.objects.filter(Q(authors__name="yuan")|Q(authors__name="egon"))
等同于下面的SQL WHERE 子句:
WHERE name ="yuan" OR name ="egon"
你可以组合& 和| 操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询:
bookList=Book.objects.filter(Q(authors__name="yuan") & ~Q(publishDate__year=2017)).values_list("title")
查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。例如:
bookList=Book.objects.filter(Q(publishDate__year=2016) | Q(publishDate__year=2017), title__icontains="python" )