P4035 [JSOI2008]球形空间产生器
题目描述
有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体。现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 nnn 维球体的球心坐标,以便于摧毁这个球形空间产生器。
输入格式
第一行是一个整数 nnn (1<=N=10)(1<=N=10)(1<=N=10)。接下来的 n+1n+1n+1 行,每行有 nnn 个实数,表示球面上一点的 nnn 维坐标。每一个实数精确到小数点后 666 位,且其绝对值都不超过 200002000020000。
输出格式
有且只有一行,依次给出球心的 nnn 维坐标( nnn 个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后 333 位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
输入输出样例
输入 #1
2 0.0 0.0 -1.0 1.0 1.0 0.0
输出 #1
0.500 1.500
说明/提示
提示:给出两个定义:
- 球心:到球面上任意一点距离都相等的点。
- 距离:设两个n为空间上的点A, B的坐标为(a1,a2,⋯,an),(b1,b2,⋯,bn)(a_1, a_2, \cdots , a_n), (b_1, b_2, \cdots , b_n)(a1,a2,⋯,an),(b1,b2,⋯,bn),则AB的距离定义为:dist=(a1−b1)2+(a2−b2)2+⋯+(an−bn)2dist = \sqrt{ (a_1-b_1)^2 + (a_2-b_2)^2 + \cdots + (a_n-b_n)^2 }dist=(a1−b1)2+(a2−b2)2+⋯+(an−b