重新开始学习javase_集合_Map

一,Map之HashMap(转:http://blog.csdn.net/zheng0518/article/details/42197049)

1.    HashMap概述:

   HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

2.    HashMap的数据结构:

   在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

 

从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。

   源码如下:

/** 
 * The table, resized as necessary. Length MUST Always be a power of two. 
 */  
transient Entry[] table;  
  
static class Entry<K,V> implements Map.Entry<K,V> {  
    final K key;  
    V value;  
    Entry<K,V> next;  
    final int hash;  
    ……  
}  

 可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

3.    HashMap的存取实现:

   1) 存储:

public V put(K key, V value) {  
    // HashMap允许存放null键和null值。  
    // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。  
    if (key == null)  
        return putForNullKey(value);  
    // 根据key的keyCode重新计算hash值。  
    int hash = hash(key.hashCode());  
    // 搜索指定hash值在对应table中的索引。  
    int i = indexFor(hash, table.length);  
    // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。  
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    // 如果i索引处的Entry为null,表明此处还没有Entry。  
    modCount++;  
    // 将key、value添加到i索引处。  
    addEntry(hash, key, value, i);  
    return null;  
}  

从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

   addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处。addEntry 是HashMap 提供的一个包访问权限的方法,代码如下

void addEntry(int hash, K key, V value, int bucketIndex) {  
    // 获取指定 bucketIndex 索引处的 Entry   
    Entry<K,V> e = table[bucketIndex];  
    // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry  
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  
    // 如果 Map 中的 key-value 对的数量超过了极限  
    if (size++ >= threshold)  
    // 把 table 对象的长度扩充到原来的2倍。  
        resize(2 * table.length);  
}

当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

   hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。

static int hash(int h) {  
    h ^= (h >>> 20) ^ (h >>> 12);  
    return h ^ (h >>> 7) ^ (h >>> 4);  
} 

 

 

我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

   对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

static int indexFor(int h, int length) {  
    return h & (length-1);  
}  

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的n 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:

 

int capacity = 1;  
    while (capacity < initialCapacity)  
        capacity <<= 1;

这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。

当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

   这看上去很简单,其实比较有玄机的,我们举个例子来说明:

   假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:

       h & (table.length-1)                     hash                             table.length-1

       8 & (15-1):                                 0100                   &              1110                   =                0100

       9 & (15-1):                                 0101                   &              1110                   =                0100

       -----------------------------------------------------------------------------------------------------------------------

       8 & (16-1):                                 0100                   &              1111                   =                0100

       9 & (16-1):                                 0101                   &              1111                   =                0101

从上面的例子中可以看出:当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与15-1(1110)进行“与”,那么 最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1,这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。

   

   所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

   根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。

  2) 读取:

public V get(Object key) {  
    if (key == null)  
        return getForNullKey();  
    int hash = hash(key.hashCode());  
    for (Entry<K,V> e = table[indexFor(hash, table.length)];  
        e != null;  
        e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))  
            return e.value;  
    }  
    return null;  
}

有了上面存储时的hash算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。

  

   3) 归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

 

4.    HashMap的resize(rehash):

   当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

   那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

 

二,Map之LinkedHashMap

1. LinkedHashMap概述:

   LinkedHashMap是Map接口的哈希表和链接列表实现,具有可预知的迭代顺序。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
   LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。
   注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。

 

2. LinkedHashMap的实现:

   对于LinkedHashMap而言,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性。下面我们来分析LinkedHashMap的源代码:

   1) Entry元素:

   LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。看源代码

/** 
 * 双向链表的表头元素。 
 */  
private transient Entry<K,V> header;  
  
/** 
 * LinkedHashMap的Entry元素。 
 * 继承HashMap的Entry元素,又保存了其上一个元素before和下一个元素after的引用。 
 */  
private static class Entry<K,V> extends HashMap.Entry<K,V> {  
    Entry<K,V> before, after;  
    ……  
} 

 2) 初始化:

通过源代码可以看出,在LinkedHashMap的构造方法中,实际调用了父类HashMap的相关构造方法来构造一个底层存放的table数组。如:

public LinkedHashMap(int initialCapacity, float loadFactor) {  
    super(initialCapacity, loadFactor);  
    accessOrder = false;  
}

 

HashMap中的相关构造方法:

public HashMap(int initialCapacity, float loadFactor) {  
    if (initialCapacity < 0)  
        throw new IllegalArgumentException("Illegal initial capacity: " +  
                                           initialCapacity);  
    if (initialCapacity > MAXIMUM_CAPACITY)  
        initialCapacity = MAXIMUM_CAPACITY;  
    if (loadFactor <= 0 || Float.isNaN(loadFactor))  
        throw new IllegalArgumentException("Illegal load factor: " +  
                                           loadFactor);  
  
    // Find a power of 2 >= initialCapacity  
    int capacity = 1;  
    while (capacity < initialCapacity)  
        capacity <<= 1;  
  
    this.loadFactor = loadFactor;  
    threshold = (int)(capacity * loadFactor);  
    table = new Entry[capacity];  
    init();  
}

 

 我们已经知道LinkedHashMap的Entry元素继承HashMap的Entry,提供了双向链表的功能。在上述HashMap的构造器
中,最后会调用init()方法,进行相关的初始化,这个方法在HashMap的实现中并无意义,只是提供给子类实现相关的初始化调用。
   LinkedHashMap重写了init()方法,在调用父类的构造方法完成构造后,进一步实现了对其元素Entry的初始化操作。

void init() {  
    header = new Entry<K,V>(-1, null, null, null);  
    header.before = header.after = header;  
} 

 

3) 存储:

   LinkedHashMap并未重写父类HashMap的put方法,而是重写了父类HashMap的put方法调用的子方法void addEntry(int hash, K key, V value, int bucketIndex) 和void createEntry(int hash, K key, V value, int bucketIndex),提供了自己特有的双向链接列表的实现。

void addEntry(int hash, K key, V value, int bucketIndex) {  
    // 调用create方法,将新元素以双向链表的的形式加入到映射中。  
    createEntry(hash, key, value, bucketIndex);  
  
    // 删除最近最少使用元素的策略定义  
    Entry<K,V> eldest = header.after;  
    if (removeEldestEntry(eldest)) {  
        removeEntryForKey(eldest.key);  
    } else {  
        if (size >= threshold)  
            resize(2 * table.length);  
    }  
} 
void createEntry(int hash, K key, V value, int bucketIndex) {  
    HashMap.Entry<K,V> old = table[bucketIndex];  
    Entry<K,V> e = new Entry<K,V>(hash, key, value, old);  
    table[bucketIndex] = e;  
    // 调用元素的addBrefore方法,将元素加入到哈希、双向链接列表。  
    e.addBefore(header);  
    size++;  
}
private void addBefore(Entry<K,V> existingEntry) {  
    after  = existingEntry;  
    before = existingEntry.before;  
    before.after = this;  
    after.before = this;  
} 

 

4) 读取:

   LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时,记录访问顺序,将最新访问的元素添加到双向链表的表头,并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。 

public V get(Object key) {  
    // 调用父类HashMap的getEntry()方法,取得要查找的元素。  
    Entry<K,V> e = (Entry<K,V>)getEntry(key);  
    if (e == null)  
        return null;  
    // 记录访问顺序。  
    e.recordAccess(this);  
    return e.value;  
}
void recordAccess(HashMap<K,V> m) {  
    LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;  
    // 如果定义了LinkedHashMap的迭代顺序为访问顺序,  
    // 则删除以前位置上的元素,并将最新访问的元素添加到链表表头。  
    if (lm.accessOrder) {  
        lm.modCount++;  
        remove();  
        addBefore(lm.header);  
    }  
} 
  1. public LinkedHashMap(int initialCapacity, float loadFactor) {  
  2.     super(initialCapacity, loadFactor);  
  3.     accessOrder = false;  
  4. }
posted @ 2016-08-23 17:25  傻瓜不傻108  阅读(156)  评论(0编辑  收藏  举报