python学习day-14 改错+dropout解决overfiting

 

 

    1. tensorflow.initialize_all_variables已改为tensorflow.global_variables_initializer()

    2. AttributeError: module ‘tensorflow.python.training.training’ has no attribute ‘SummaryWriter’

      tf.train.SummaryWriter已废除 
      使用 tf.train.summary.FileWriter

    3. AttributeError: module ‘tensorflow’ has no attribute ‘sub’

      减法 tf.sub() 已改为tf.subtract()

    4. 参考:http://blog.csdn.NET/edwards_june/article/details/65652385

       

    5. 前4个是 V0.11 的API 用在 V1.0 的错误

      5.1. AttributeError: 'module' object has no attribute 'merge_all_summaries'

      >> tf.merge_all_summaries() 改为:summary_op = tf.summary.merge_all()


       

      5.2. AttributeError: 'module' object has no attribute 'SummaryWriter'

      >> tf.train.SummaryWriter 改为:tf.summary.FileWriter


       

      5.3. AttributeError: 'module' object has no attribute 'scalar_summary'

      >> tf.scalar_summary 改为:tf.summary.scalar

       

      5.4. AttributeError: 'module' object has no attribute 'histogram_summary'

      >> histogram_summary 改为:tf.summary.histogram
       
      下边这个是 V1.0 的API 用在 V0.11 的错误
      File "dis-alexnet_benchmark.py", line 110, in alexnet_v2
          biases_initializer=tf.zeros_initializer(),
      TypeError: zeros_initializer() takes at least 1 argument (0 given)
      >> 将 biases_initializer=tf.zeros_initializer() 改为:biases_initializer=tf.zeros_initialize 
    6. 程序 
      
      """
      Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
      """
      import tensorflow as tf
      from tensorflow.examples.tutorials.mnist import input_data
      # number 1 to 10 data
      mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
      
      
      # from tensorflow.examples.tutorials.mnist import input_data
      # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
      def add_layer(inputs, in_size, out_size, activation_function=None,):
          # add one more layer and return the output of this layer
          Weights = tf.Variable(tf.random_normal([in_size, out_size]))
          biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
          Wx_plus_b = tf.matmul(inputs, Weights) + biases
          if activation_function is None:
              outputs = Wx_plus_b
          else:
              outputs = activation_function(Wx_plus_b,)
          return outputs
      
      def compute_accuracy(v_xs, v_ys):
          global prediction
          y_pre = sess.run(prediction, feed_dict={xs: v_xs})
          correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
          accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
          result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
          return result
      
      # define placeholder for inputs to network
      xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
      ys = tf.placeholder(tf.float32, [None, 10])
      
      # add output layer
      prediction = add_layer(xs, 784, 10,  activation_function=tf.nn.softmax)
      
      # the error between prediction and real data
      cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                    reduction_indices=[1]))       # loss
      train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
      
      sess = tf.Session()
      # important step
      tf.global_variables_initializer()
      
      for i in range(1000):
          batch_xs, batch_ys = mnist.train.next_batch(100)
          sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
          if i % 50 == 0:
              print(compute_accuracy(
                  mnist.test.images, mnist.test.labels))
      

        

posted @ 2018-08-26 16:44  enough  阅读(366)  评论(0编辑  收藏  举报