模板【洛谷P3390】 【模板】矩阵快速幂
P3390 【模板】矩阵快速幂
题目描述
给定n*n的矩阵A,求A^k
矩阵A的大小为n×m,B的大小为n×k,设C=A×B
则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i,p}×B_{p,j}\)
矩阵乘满足结合律:(AB)C=A(BC)
有一种特殊的矩阵:单位矩阵,它从左上角到右下角的对角线上的元素均为1,除此以外全都为0。它在矩阵乘中相当于数乘中的1,即任何矩阵乘它都等于本身。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
using namespace std;
const int mod=1e9+7;
const int wx=117;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int n,k;
struct mat{
int a[wx][wx];
mat(){memset(a,0,sizeof a);}
void e(){for(int i=0;i<=n;i++)a[i][i]=1;}
friend mat operator * (const mat & a,const mat & b){
mat c;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
}
}
}
return c;
}
}a,ans;
void ksm(mat aa,int b){
ans.e();
while(b){
if(b&1)ans=ans*aa;
aa=aa*aa;
b>>=1;
}
}
signed main(){
n=read(); k=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
a.a[i][j]=read();
}
}
ksm(a,k);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
printf("%lld ",ans.a[i][j]);
}
puts("");
}
return 0;
}