线段树 SP1043 GSS1 - Can you answer these queries I
SP1043 GSS1 - Can you answer these queries I
题目描述
给出了序列A[1],A[2],…,A[N]。 (a[i]≤15007,1≤N≤50000)。查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j];x≤i≤j≤y}。 给定M个查询,程序必须输出这些查询的结果。
输入输出格式
输入格式:
- 输入文件的第一行包含整数N。
- 在第二行,N个数字跟随。
- 第三行包含整数M。
- M行跟在后面,其中第1行包含两个数字xi和yi。
输出格式:
您的程序应该输出M查询的结果,每一行一个查询。
不带修改的维护最大子段和,挺裸的,维护四个量就行了。具体参考小白逛公园https://www.cnblogs.com/wangxiaodai/p/9744081.html
code:
#include<iostream>
#include<cstdio>
#define ls(o) o<<1
#define rs(o) o<<1|1
using namespace std;
const int wx=100017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
struct val_tree{
int l,r,sum,lsum,rsum,tot;
#define sum(o) t[o].sum
#define lsum(o) t[o].lsum
#define rsum(o) t[o].rsum
#define tot(o) t[o].tot
}t[wx*4];
int n,m;
int a[wx];
void up(int o){
tot(o)=tot(ls(o))+tot(rs(o));
lsum(o)=max(lsum(ls(o)),tot(ls(o))+lsum(rs(o)));
rsum(o)=max(rsum(rs(o)),tot(rs(o))+rsum(ls(o)));
sum(o)=max(sum(ls(o)),max(sum(rs(o)),rsum(ls(o))+lsum(rs(o))));
}
void build(int o,int l,int r){
t[o].l=l;t[o].r=r;
if(l==r){sum(o)=tot(o)=lsum(o)=rsum(o)=a[l];return;}
int mid=t[o].l+t[o].r>>1;
if(l<=mid)build(ls(o),l,mid);
if(r>mid)build(rs(o),mid+1,r);
up(o);
}
val_tree query(int o,int l,int r){
if(l<=t[o].l&&t[o].r<=r){
return t[o];
}
int mid=t[o].l+t[o].r>>1;
val_tree tmp,tmp1,tmp2;
if(r<=mid)return query(ls(o),l,r);
if(l>mid)return query(rs(o),l,r);
tmp1=query(ls(o),l,r);
tmp2=query(rs(o),l,r);
tmp.tot=tmp1.tot+tmp2.tot;
tmp.lsum=max(tmp1.lsum,tmp1.tot+tmp2.lsum);
tmp.rsum=max(tmp2.rsum,tmp2.tot+tmp1.rsum);
tmp.sum=max(max(tmp1.sum,tmp2.sum),tmp1.rsum+tmp2.lsum);
return tmp;
}
int main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
build(1,1,n);
m=read();
for(int i=1;i<=m;i++){
int x,y;
x=read();y=read();
printf("%d\n",query(1,x,y).sum);
}
return 0;
}