状压DP 【洛谷P3694】 邦邦的大合唱站队
【洛谷P3694】 邦邦的大合唱站队
题目背景
BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题。
题目描述
N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。
现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。
请问最少让多少偶像出列?
输入输出格式
输入格式:
第一行2个整数N,M。
接下来N个行,每行一个整数\(a_i (1\le a_i \le M)\),表示队列中第i个偶像的团队编号。
输出格式:
一个整数,表示答案
一开始看这个题真的没有思路,想了一下直接写了个爆搜,枚举每个团队的开头位置在求答案取最小。
真的意外可以过70分。
暴搜
code:
#include<iostream>
#include<cstdio>
using namespace std;
const int wx=201007;
int tot[wx],sum[wx][17],vis[wx],pre[wx],last[wx],E[wx];
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
int n,m,x;
int ans=0x3f3f3f3f;
void dfs(int now,int end,int num){
if(now==m+1&&end==n){
ans=min(ans,num);
return ;
}
if(num>=ans)return;
for(int i=1;i<=m;i++){
if(vis[i])continue;
vis[i]=1;
dfs(now+1,end+tot[i],tot[i]-sum[end+tot[i]][i]+sum[end][i]+num);
vis[i]=0;
}
}
signed main(){
n=read();m=read();
for(int i=1;i<=n;i++){
x=read();
for(int j=1;j<=m;j++)sum[i][j]=sum[i-1][j];
sum[i][x]=sum[i-1][x]+1;
tot[x]++;
}
dfs(1,0,0);
printf("%d\n",ans);
return 0;
}
正解知道是状压,但是连状态都不会设(菜死了菜死了。。。)
看了大佬博客才发现这题设了状态就完事了。。。
设\(f(i)\)表示当前状态下的最优答案。因为数据范围,肯定是要状压m,怎么压是个问题。
其实我们用二进制的一位表示一个团队,那么1代表这个团队已经站好了,0表示还没有站好。
这里的站好定义要明确,就是这个团队里的每个人都紧挨着了,并且我们默认这些团队都是从头开始向后紧挨着的,(每一次取min保证之前的状态站法是最优的)。
转移就比较好想了。
\[f(i)=f(i\ ^ \ (1<<j-1))+tot(j)-(sum(pos+tot(j))(j)-sum(pos)(j))
\]
pos就是当前不算第i个团队的人的最后位置,枚举一边就可以了。
复杂度\(O(m*2^m)\)
DP
code:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int wx=100017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
int n,m;
int f[1<<20],sum[wx][21],tot[21];
int main(){
n=read();m=read();
for(int i=1;i<=n;i++){
int x;
x=read();
for(int j=1;j<=m;j++)sum[i][j]=sum[i-1][j];
sum[i][x]=sum[i][x]+1;
tot[x]++;
}
memset(f,0x3f,sizeof f);
f[0]=0;int WX=(1<<m);
for(int i=1;i<WX;i++){
int pos=0;
for(int j=1;j<=m;j++){
if(i&(1<<j-1)){
pos+=tot[j];
}
}
for(int j=1;j<=m;j++){
if(i&(1<<j-1)){
f[i]=min(f[i],f[i^(1<<j-1)]+tot[j]+sum[pos-tot[j]][j]-sum[pos][j]);
}
}
}
printf("%d\n",f[WX-1]);
return 0;
}