摘要:
YOLOv4: Optimal Speed and Accuracy of Object Detection 2020-04-26 11:28:45 Paper: https://arxiv.org/abs/2004.10934 Code: https://github.com/AlexeyAB/d 阅读全文
摘要:
Learning to Predict Context-adaptive Convolution for Semantic Segmentation 2020-04-20 17:41:35 Paper: https://arxiv.org/pdf/2004.08222.pdf Code: 1. Ba 阅读全文
摘要:
Increasing Well-Being in Academia 2020-04-19 09:20:56 Source: https://medium.com/@isabelle.augenstein/increasing-well-being-in-academia-97f3ebc1599f A 阅读全文
该文被密码保护。 阅读全文
摘要:
The Transformer Family 2020-04-10 19:34:46 Link: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html 阅读全文
摘要:
Multi-task Collaborative Network for Joint Referring Expression Comprehension and Segmentation 2020-03-30 19:02:01 Paper: https://arxiv.org/abs/2003.0 阅读全文
摘要:
How NAS was improved. From days to hours in search time 2020-03-29 21:18:08 Source: https://medium.com/peltarion/how-nas-was-improved-from-days-to-hou 阅读全文
摘要:
Recent Advances in Vision and Language PreTrained Models (VL-PTMs) Maintained by WANG Yue (yuewang@cse.cuhk.edu.hk). Last update on 2020/03/26. Source 阅读全文
该文被密码保护。 阅读全文
摘要:
Know Your Surroundings: Exploiting Scene Information for Object Tracking 2020-03-25 17:52:24 Paper: https://arxiv.org/abs/2003.11014 Code: 尚无 1. Backg 阅读全文
摘要:
Video Object Grounding using Semantic Roles in Language Description 2020-03-25 17:44:59 Paper:https://arxiv.org/pdf/2003.10606.pdf Code: https://githu 阅读全文
摘要:
MAST: A Memory-Augmented Self-Supervised Tracker 2020-03-24 20:12:56 Paper: https://arxiv.org/pdf/2002.07793 Code: https://github.com/zlai0/MAST 1. Ba 阅读全文
该文被密码保护。 阅读全文
摘要:
Attention is All you need 2020-03-22 00:29:11 Paper: https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf Doc: https://huggingface.co/trans 阅读全文
该文被密码保护。 阅读全文
摘要:
Dynamic Zoom-in Network for Fast Object Detection in Large Images 2020-03-17 21:45:24 Paper: CVPR-2018 1. Background and Motivation: 如图 1 所示, 本文提出一种 c 阅读全文
该文被密码保护。 阅读全文
摘要:
A Survey of Long-Term Context in Transformers 2020-03-17 10:08:32 Source: https://www.pragmatic.ml/a-survey-of-methods-for-incorporating-long-term-con 阅读全文
该文被密码保护。 阅读全文
摘要:
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks 2020-03-12 23:10:53 Paper: NeurIPS 2019 Code: https:/ 阅读全文
摘要:
SPARK: Spatial-aware Online Incremental Attack Against Visual Tracking 2020-03-09 23:47:26 Paper: https://arxiv.org/pdf/1910.08681.pdf 1. Background a 阅读全文
摘要:
Generating Adversarial Examples with Adversarial Networks 2020-03-08 22:40:38 Paper: IJCAI-2018 Code: https://github.com/mathcbc/advGAN_pytorch 1. Bac 阅读全文
摘要:
Weakly-Supervised Spatio-Temporally Grounding Natural Sentence in Video 2020-03-08 14:29:35 Paper: https://arxiv.org/pdf/1906.02549.pdf Code: https:// 阅读全文
摘要:
Approaching literature review for academic purposes: The Literature Review Checklist Debora F.B. LeiteI II III http://orcid.org/0000-0001-8839-3934 Ma 阅读全文
该文被密码保护。 阅读全文
摘要:
Visual Semantic Reasoning for Image-Text Matching 2020-03-06 15:17:02 Paper: https://arxiv.org/pdf/1909.02701.pdf Code: https://github.com/KunpengLi19 阅读全文
摘要:
Stacked Cross Attention for Image-Text Matching 2020-03-06 15:13:08 Paper: https://arxiv.org/pdf/1803.08024.pdf Code: https://github.com/kuanghuei/SCA 阅读全文
摘要:
Non-local Neural Networks 2020-03-05 20:24:39 Paper: CVPR_2018 Code: https://github.com/facebookresearch/video-nonlocal-net (Caffe2 version) https://g 阅读全文
摘要:
BERT-related Papers 2020-03-03 16:36:12 This is a list of BERT-related papers. Any feedback is welcome. Source: https://github.com/tomohideshibata/BER 阅读全文
摘要:
BERT在多模态领域中的应用 Source: Link BERT (Bidrectional Encoder Representations from Transformers) 自提出后,凭借着 Transformer 强大的特征学习能力以及通过掩码语言模型实现的双向编码,其大幅地提高了各项 NL 阅读全文
该文被密码保护。 阅读全文
该文被密码保护。 阅读全文
摘要:
Learning When and Where to Zoom with Deep Reinforcement Learning 2020-03-03 14:47:08 Paper: https://arxiv.org/pdf/2003.00425.pdf Related work: "Effici 阅读全文
该文被密码保护。 阅读全文
摘要:
Illustrating the Reformer 2020-03-02 13:39:12 Source: https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0 See also: Translation in � 阅读全文
该文被密码保护。 阅读全文