Summary on C++

Summary on C++ 

2018-08-15 14:55:02

 

1. 什么是指针?

 

指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:

 

type *var-name;

 

在这里,type 是指针的基类型,它必须是一个有效的 C++ 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

 

int    *ip;    /* 一个整型的指针 */
double *dp;    /* 一个 double 型的指针 */
float  *fp;    /* 一个浮点型的指针 */
char   *ch;    /* 一个字符型的指针 */

 

所有指针的值的实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,都是一样的,都是一个代表内存地址的长的十六进制数。不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。

 

实例

#include <iostream>
using namespace std;
int main ()
  int var = 20; // 实际变量的声明
  int *ip; // 指针变量的声明
  ip = &var; // 在指针变量中存储 var 的地址
  cout << "Value of var variable: ";
  cout << var << endl; // 输出在指针变量中存储的地址
  cout << "Address stored in ip variable: ";
  cout << ip << endl; // 访问指针中地址的值
  cout << "Value of *ip variable: ";  
  cout << *ip << endl;
  return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

 

C++ Null 指针

NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:

#include <iostream>

using namespace std;

int main ()
{
   int  *ptr = NULL;

   cout << "ptr 的值是 " << ptr ;
 
   return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

ptr 的值是 0

 

C++ 指针的算术运算

指针是一个用数值表示的地址。因此,您可以对指针执行算术运算。可以对指针进行四种算术运算:++、--、+、-。

假设 ptr 是一个指向地址 1000 的整型指针,是一个 32 位的整数,让我们对该指针执行下列的算术运算:

ptr++

在执行完上述的运算之后,ptr 将指向位置 1004,因为 ptr 每增加一次,它都将指向下一个整数位置,即当前位置往后移 4 个字节。这个运算会在不影响内存位置中实际值的情况下,移动指针到下一个内存位置。如果 ptr 指向一个地址为 1000 的字符,上面的运算会导致指针指向位置 1001,因为下一个字符位置是在 1001。

递增一个指针

我们喜欢在程序中使用指针代替数组,因为变量指针可以递增,而数组不能递增,因为数组是一个常量指针。下面的程序递增变量指针,以便顺序访问数组中的每一个元素:

实例

#include <iostream> using namespace std; const int MAX = 3; int main () { int var[MAX] = {10, 100, 200}; int *ptr; // 指针中的数组地址 ptr = var; for (int i = 0; i < MAX; i++) { cout << "Address of var[" << i << "] = "; cout << ptr << endl; cout << "Value of var[" << i << "] = "; cout << *ptr << endl; // 移动到下一个位置 ptr++; } return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Address of var[0] = 0xbfa088b0
Value of var[0] = 10
Address of var[1] = 0xbfa088b4
Value of var[1] = 100
Address of var[2] = 0xbfa088b8
Value of var[2] = 200

 

C++ 指针数组

可能有一种情况,我们想要让数组存储指向 int 或 char 或其他数据类型的指针。下面是一个指向整数的指针数组的声明:

int *ptr[MAX];

在这里,把 ptr 声明为一个数组,由 MAX 个整数指针组成。因此,ptr 中的每个元素,都是一个指向 int 值的指针。下面的实例用到了三个整数,它们将存储在一个指针数组中,如下所示:

实例

#include <iostream> using namespace std; const int MAX = 3; int main () { int var[MAX] = {10, 100, 200}; int *ptr[MAX]; for (int i = 0; i < MAX; i++) { ptr[i] = &var[i]; // 赋值为整数的地址 } for (int i = 0; i < MAX; i++) { cout << "Value of var[" << i << "] = "; cout << *ptr[i] << endl; } return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

 

您也可以用一个指向字符的指针数组来存储一个字符串列表,如下:

实例

#include <iostream> using namespace std; const int MAX = 4; int main () { const char *names[MAX] = { "Zara Ali", "Hina Ali", "Nuha Ali", "Sara Ali", }; for (int i = 0; i < MAX; i++) { cout << "Value of names[" << i << "] = "; cout << names[i] << endl; } return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Value of names[0] = Zara Ali
Value of names[1] = Hina Ali
Value of names[2] = Nuha Ali
Value of names[3] = Sara Ali

 

C++ 指向指针的指针(多级间接寻址)

指向指针的指针是一种多级间接寻址的形式,或者说是一个指针链。通常,一个指针包含一个变量的地址。当我们定义一个指向指针的指针时,第一个指针包含了第二个指针的地址,第二个指针指向包含实际值的位置。

C++ 中指向指针的指针

一个指向指针的指针变量必须如下声明,即在变量名前放置两个星号。例如,下面声明了一个指向 int 类型指针的指针:

int **var;

当一个目标值被一个指针间接指向到另一个指针时,访问这个值需要使用两个星号运算符,如下面实例所示:

实例

#include <iostream> using namespace std; int main () { int var; int *ptr; int **pptr; var = 3000; // 获取 var 的地址 ptr = &var; // 使用运算符 & 获取 ptr 的地址 pptr = &ptr; // 使用 pptr 获取值 cout << "var 值为 :" << var << endl; cout << "*ptr 值为:" << *ptr << endl; cout << "**pptr 值为:" << **pptr << endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

var 值为 :3000
*ptr 值为:3000
**pptr 值为:3000

 

2. C++ 引用

引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。

C++ 引用 vs 指针

引用很容易与指针混淆,它们之间有三个主要的不同:

  • 不存在空引用。引用必须连接到一块合法的内存。
  • 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
  • 引用必须在创建时被初始化。指针可以在任何时间被初始化。

C++ 中创建引用

试想变量名称是变量附属在内存位置中的标签,您可以把引用当成是变量附属在内存位置中的第二个标签。因此,您可以通过原始变量名称或引用来访问变量的内容。例如:

int i = 17;

我们可以为 i 声明引用变量,如下所示:

int&  r = i;
double& s = d;

在这些声明中,& 读作引用。因此,第一个声明可以读作 "r 是一个初始化为 i 的整型引用",第二个声明可以读作 "s 是一个初始化为 d 的 double 型引用"。下面的实例使用了 int 和 double 引用:

实例

#include <iostream> using namespace std; int main () { // 声明简单的变量 int i; double d; // 声明引用变量 int& r = i; double& s = d; i = 5; cout << "Value of i : " << i << endl; cout << "Value of i reference : " << r << endl; d = 11.7; cout << "Value of d : " << d << endl; cout << "Value of d reference : " << s << endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7

 

C++ 把引用作为参数

我们已经讨论了如何使用指针来实现引用调用函数。下面的实例使用了引用来实现引用调用函数。

实例

#include <iostream> using namespace std; // 函数声明 void swap(int& x, int& y); int main () { // 局部变量声明 int a = 100; int b = 200; cout << "交换前,a 的值:" << a << endl; cout << "交换前,b 的值:" << b << endl; /* 调用函数来交换值 */ swap(a, b); cout << "交换后,a 的值:" << a << endl; cout << "交换后,b 的值:" << b << endl; return 0; } // 函数定义 void swap(int& x, int& y) { int temp; temp = x; /* 保存地址 x 的值 */ x = y; /* 把 y 赋值给 x */ y = temp; /* 把 x 赋值给 y */ return; }

当上面的代码被编译和执行时,它会产生下列结果:

交换前,a 的值: 100
交换前,b 的值: 200
交换后,a 的值: 200
交换后,b 的值: 100

 

C++ 把引用作为返回值

通过使用引用来替代指针,会使 C++ 程序更容易阅读和维护。C++ 函数可以返回一个引用,方式与返回一个指针类似。

当函数返回一个引用时,则返回一个指向返回值的隐式指针。这样,函数就可以放在赋值语句的左边。例如,请看下面这个简单的程序:

实例

#include <iostream> using namespace std; double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0}; double& setValues( int i ) { return vals[i]; // 返回第 i 个元素的引用 } // 要调用上面定义函数的主函数 int main () { cout << "改变前的值" << endl; for ( int i = 0; i < 5; i++ ) { cout << "vals[" << i << "] = "; cout << vals[i] << endl; } setValues(1) = 20.23; // 改变第 2 个元素 setValues(3) = 70.8; // 改变第 4 个元素 cout << "改变后的值" << endl; for ( int i = 0; i < 5; i++ ) { cout << "vals[" << i << "] = "; cout << vals[i] << endl; } return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

改变前的值
vals[0] = 10.1
vals[1] = 12.6
vals[2] = 33.1
vals[3] = 24.1
vals[4] = 50
改变后的值
vals[0] = 10.1
vals[1] = 20.23
vals[2] = 33.1
vals[3] = 70.8
vals[4] = 50

当返回一个引用时,要注意被引用的对象不能超出作用域。所以返回一个对局部变量的引用是不合法的,但是,可以返回一个对静态变量的引用。

int& func() { int q; //! return q; // 在编译时发生错误 static int x; return x; // 安全,x 在函数作用域外依然是有效的 }
 

3. C++ 数据结构

C/C++ 数组允许定义可存储相同类型数据项的变量,但是结构是 C++ 中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。

结构用于表示一条记录,假设您想要跟踪图书馆中书本的动态,您可能需要跟踪每本书的下列属性:

  • Title :标题
  • Author :作者
  • Subject :类目
  • Book ID :书的 ID

定义结构

为了定义结构,您必须使用 struct 语句。struct 语句定义了一个包含多个成员的新的数据类型,struct 语句的格式如下:

struct type_name { member_type1 member_name1; member_type2 member_name2; member_type3 member_name3; . . } object_names;

type_name 是结构体类型的名称,member_type1 member_name1 是标准的变量定义,比如 int i; 或者 float f; 或者其他有效的变量定义。在结构定义的末尾,最后一个分号之前,您可以指定一个或多个结构变量,这是可选的。下面是声明一个结构体类型 Books,变量为 book

struct Books { char title[50]; char author[50]; char subject[100]; int book_id; } book;

 

访问结构成员

为了访问结构的成员,我们使用成员访问运算符(.)。成员访问运算符是结构变量名称和我们要访问的结构成员之间的一个句号。

下面的实例演示了结构的用法:

实例

#include <iostream> #include <cstring> using namespace std; // 声明一个结构体类型 Books struct Books { char title[50]; char author[50]; char subject[100]; int book_id; }; int main( ) { Books Book1; // 定义结构体类型 Books 的变量 Book1 Books Book2; // 定义结构体类型 Books 的变量 Book2 // Book1 详述 strcpy( Book1.title, "C++ 教程"); strcpy( Book1.author, "Runoob"); strcpy( Book1.subject, "编程语言"); Book1.book_id = 12345; // Book2 详述 strcpy( Book2.title, "CSS 教程"); strcpy( Book2.author, "Runoob"); strcpy( Book2.subject, "前端技术"); Book2.book_id = 12346; // 输出 Book1 信息 cout << "第一本书标题 : " << Book1.title <<endl; cout << "第一本书作者 : " << Book1.author <<endl; cout << "第一本书类目 : " << Book1.subject <<endl; cout << "第一本书 ID : " << Book1.book_id <<endl; // 输出 Book2 信息 cout << "第二本书标题 : " << Book2.title <<endl; cout << "第二本书作者 : " << Book2.author <<endl; cout << "第二本书类目 : " << Book2.subject <<endl; cout << "第二本书 ID : " << Book2.book_id <<endl; return 0; }

实例中定义了结构体类似 Books 及其两个变量 Book1 和 Book2。当上面的代码被编译和执行时,它会产生下列结果:

第一本书标题 : C++ 教程
第一本书作者 : Runoob
第一本书类目 : 编程语言
第一本书 ID : 12345
第二本书标题 : CSS 教程
第二本书作者 : Runoob
第二本书类目 : 前端技术
第二本书 ID : 12346

 

结构作为函数参数

您可以把结构作为函数参数,传参方式与其他类型的变量或指针类似。您可以使用上面实例中的方式来访问结构变量:

实例

#include <iostream> #include <cstring> using namespace std; void printBook( struct Books book ); // 声明一个结构体类型 Books struct Books { char title[50]; char author[50]; char subject[100]; int book_id; }; int main( ) { Books Book1; // 定义结构体类型 Books 的变量 Book1 Books Book2; // 定义结构体类型 Books 的变量 Book2 // Book1 详述 strcpy( Book1.title, "C++ 教程"); strcpy( Book1.author, "Runoob"); strcpy( Book1.subject, "编程语言"); Book1.book_id = 12345; // Book2 详述 strcpy( Book2.title, "CSS 教程"); strcpy( Book2.author, "Runoob"); strcpy( Book2.subject, "前端技术"); Book2.book_id = 12346; // 输出 Book1 信息 printBook( Book1 ); // 输出 Book2 信息 printBook( Book2 ); return 0; } void printBook( struct Books book ) { cout << "书标题 : " << book.title <<endl; cout << "书作者 : " << book.author <<endl; cout << "书类目 : " << book.subject <<endl; cout << "书 ID : " << book.book_id <<endl; }

当上面的代码被编译和执行时,它会产生下列结果:

书标题 : C++ 教程
书作者 : Runoob
书类目 : 编程语言
 ID : 12345
书标题 : CSS 教程
书作者 : Runoob
书类目 : 前端技术
 ID : 12346

指向结构的指针

您可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:

struct Books *struct_pointer;

现在,您可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,请把 & 运算符放在结构名称的前面,如下所示:

struct_pointer = &Book1;

为了使用指向该结构的指针访问结构的成员,您必须使用 -> 运算符,如下所示:

struct_pointer->title;

让我们使用结构指针来重写上面的实例,这将有助于您理解结构指针的概念:

实例

#include <iostream> #include <cstring> using namespace std; void printBook( struct Books *book ); struct Books { char title[50]; char author[50]; char subject[100]; int book_id; }; int main( ) { Books Book1; // 定义结构体类型 Books 的变量 Book1 Books Book2; // 定义结构体类型 Books 的变量 Book2 // Book1 详述 strcpy( Book1.title, "C++ 教程"); strcpy( Book1.author, "Runoob"); strcpy( Book1.subject, "编程语言"); Book1.book_id = 12345; // Book2 详述 strcpy( Book2.title, "CSS 教程"); strcpy( Book2.author, "Runoob"); strcpy( Book2.subject, "前端技术"); Book2.book_id = 12346; // 通过传 Book1 的地址来输出 Book1 信息 printBook( &Book1 ); // 通过传 Book2 的地址来输出 Book2 信息 printBook( &Book2 ); return 0; } // 该函数以结构指针作为参数 void printBook( struct Books *book ) { cout << "书标题 : " << book->title <<endl; cout << "书作者 : " << book->author <<endl; cout << "书类目 : " << book->subject <<endl; cout << "书 ID : " << book->book_id <<endl; }

当上面的代码被编译和执行时,它会产生下列结果:

书标题  : C++ 教程
书作者 : Runoob
书类目 : 编程语言
 ID : 12345
书标题  : CSS 教程
书作者 : Runoob
书类目 : 前端技术
 ID : 12346

 

typedef 关键字

下面是一种更简单的定义结构的方式,您可以为创建的类型取一个"别名"。例如:

typedef struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
}Books;

现在,您可以直接使用 Books 来定义 Books 类型的变量,而不需要使用 struct 关键字。下面是实例:

Books Book1, Book2;

您可以使用 typedef 关键字来定义非结构类型,如下所示:

typedef long int *pint32;
 
pint32 x, y, z;

x, y 和 z 都是指向长整型 long int 的指针。

 

3. C++ 类 & 对象

 

C++ 在 C 语言的基础上增加了面向对象编程,C++ 支持面向对象程序设计。类是 C++ 的核心特性,通常被称为用户定义的类型。

类用于指定对象的形式,它包含了数据表示法和用于处理数据的方法。类中的数据和方法称为类的成员。函数在一个类中被称为类的成员。

C++ 类定义

定义一个类,本质上是定义一个数据类型的蓝图。这实际上并没有定义任何数据,但它定义了类的名称意味着什么,也就是说,它定义了类的对象包括了什么,以及可以在这个对象上执行哪些操作。

类定义是以关键字 class 开头,后跟类的名称。类的主体是包含在一对花括号中。类定义后必须跟着一个分号或一个声明列表。例如,我们使用关键字 class 定义 Box 数据类型,如下所示:

class Box { public: double length; // 盒子的长度 double breadth; // 盒子的宽度 double height; // 盒子的高度 };

关键字 public 确定了类成员的访问属性。在类对象作用域内,公共成员在类的外部是可访问的。您也可以指定类的成员为 private 或 protected,这个我们稍后会进行讲解。

 

定义 C++ 对象

类提供了对象的蓝图,所以基本上,对象是根据类来创建的。声明类的对象,就像声明基本类型的变量一样。下面的语句声明了类 Box 的两个对象:

Box Box1; // 声明 Box1,类型为 Box Box Box2; // 声明 Box2,类型为 Box

对象 Box1 和 Box2 都有它们各自的数据成员。

 

访问数据成员

类的对象的公共数据成员可以使用直接成员访问运算符 (.) 来访问。为了更好地理解这些概念,让我们尝试一下下面的实例:

实例

#include <iostream>
using namespace std;
class Box {
public: double length; // 长度
double breadth; // 宽度
double height; // 高度 };
 
int main( ) {
Box Box1; // 声明 Box1,类型为
Box Box Box2; // 声明 Box2,类型为 Box
double volume = 0.0; // 用于存储体积 // box 1 详述
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0; // box 2 详述
 
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0; // box 1 的体积
volume = Box1.height * Box1.length * Box1.breadth;
cout << "Box1 的体积:" << volume <<endl; // box 2 的体积
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Box2 的体积:" << volume <<endl;
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Box1 的体积:210
Box2 的体积:1560

需要注意的是,私有的成员和受保护的成员不能使用直接成员访问运算符 (.) 来直接访问。我们将在后续的教程中学习如何访问私有成员和受保护的成员。

 

C++ 类成员函数

类的成员函数是指那些把定义和原型写在类定义内部的函数,就像类定义中的其他变量一样。类成员函数是类的一个成员,它可以操作类的任意对象,可以访问对象中的所有成员。

让我们看看之前定义的类 Box,现在我们要使用成员函数来访问类的成员,而不是直接访问这些类的成员:

class Box { public: double length; // 长度 double breadth; // 宽度 double height; // 高度 double getVolume(void);// 返回体积 };

成员函数可以定义在类定义内部,或者单独使用范围解析运算符 :: 来定义。在类定义中定义的成员函数把函数声明为内联的,即便没有使用 inline 标识符。所以您可以按照如下方式定义 Volume() 函数:

class Box { public: double length; // 长度 double breadth; // 宽度 double height; // 高度 double getVolume(void) { return length * breadth * height; } };

 

您也可以在类的外部使用范围解析运算符 :: 定义该函数,如下所示:

double Box::getVolume(void) { return length * breadth * height; }

在这里,需要强调一点,在 :: 运算符之前必须使用类名。调用成员函数是在对象上使用点运算符(.),这样它就能操作与该对象相关的数据,如下所示:

Box myBox; // 创建一个对象 myBox.getVolume(); // 调用该对象的成员函数
 

让我们使用上面提到的概念来设置和获取类中不同的成员的值:

实例

#include <iostream> using namespace std; class Box { public: double length; // 长度 double breadth; // 宽度 double height; // 高度 // 成员函数声明 double getVolume(void); void setLength( double len ); void setBreadth( double bre ); void setHeight( double hei ); }; // 成员函数定义 double Box::getVolume(void) { return length * breadth * height; } void Box::setLength( double len ) { length = len; } void Box::setBreadth( double bre ) { breadth = bre; } void Box::setHeight( double hei ) { height = hei; } // 程序的主函数 int main( ) { Box Box1; // 声明 Box1,类型为 Box Box Box2; // 声明 Box2,类型为 Box double volume = 0.0; // 用于存储体积 // box 1 详述 Box1.setLength(6.0); Box1.setBreadth(7.0); Box1.setHeight(5.0); // box 2 详述 Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0); // box 1 的体积 volume = Box1.getVolume(); cout << "Box1 的体积:" << volume <<endl; // box 2 的体积 volume = Box2.getVolume(); cout << "Box2 的体积:" << volume <<endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Box1 的体积: 210
Box2 的体积: 1560

 

4. C++ 继承

面向对象程序设计中最重要的一个概念是继承。继承允许我们依据另一个类来定义一个类,这使得创建和维护一个应用程序变得更容易。这样做,也达到了重用代码功能和提高执行时间的效果。

当创建一个类时,您不需要重新编写新的数据成员和成员函数,只需指定新建的类继承了一个已有的类的成员即可。这个已有的类称为基类,新建的类称为派生类

继承代表了 is a 关系。例如,哺乳动物是动物,狗是哺乳动物,因此,狗是动物,等等。

基类 & 派生类

一个类可以派生自多个类,这意味着,它可以从多个基类继承数据和函数。定义一个派生类,我们使用一个类派生列表来指定基类。类派生列表以一个或多个基类命名,形式如下:

class derived-class: access-specifier base-class

其中,访问修饰符 access-specifier 是 public、protected 或 private 其中的一个,base-class 是之前定义过的某个类的名称。如果未使用访问修饰符 access-specifier,则默认为 private。

假设有一个基类 ShapeRectangle 是它的派生类,如下所示:

实例

#include <iostream> using namespace std; // 基类 class Shape { public: void setWidth(int w) { width = w; } void setHeight(int h) { height = h; } protected: int width; int height; }; // 派生类 class Rectangle: public Shape { public: int getArea() { return (width * height); } }; int main(void) { Rectangle Rect; Rect.setWidth(5); Rect.setHeight(7); // 输出对象的面积 cout << "Total area: " << Rect.getArea() << endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Total area: 35

 

访问控制和继承

派生类可以访问基类中所有的非私有成员。因此基类成员如果不想被派生类的成员函数访问,则应在基类中声明为 private。

我们可以根据访问权限总结出不同的访问类型,如下所示:

 

访问publicprotectedprivate
同一个类 yes yes yes
派生类 yes yes no
外部的类 yes no no

一个派生类继承了所有的基类方法,但下列情况除外:

  • 基类的构造函数、析构函数和拷贝构造函数。
  • 基类的重载运算符。
  • 基类的友元函数。

继承类型

当一个类派生自基类,该基类可以被继承为 public、protected 或 private 几种类型。继承类型是通过上面讲解的访问修饰符 access-specifier 来指定的。

我们几乎不使用 protected 或 private 继承,通常使用 public 继承。当使用不同类型的继承时,遵循以下几个规则:

  • 公有继承(public):当一个类派生自公有基类时,基类的公有成员也是派生类的公有成员,基类的保护成员也是派生类的保护成员,基类的私有成员不能直接被派生类访问,但是可以通过调用基类的公有保护成员来访问。
  • 保护继承(protected): 当一个类派生自保护基类时,基类的公有保护成员将成为派生类的保护成员。
  • 私有继承(private):当一个类派生自私有基类时,基类的公有保护成员将成为派生类的私有成员。

 

多继承

多继承即一个子类可以有多个父类,它继承了多个父类的特性。

C++ 类可以从多个类继承成员,语法如下:

class <派生类名>:<继承方式1><基类名1>,<继承方式2><基类名2>,…
{
<派生类类体>
};

其中,访问修饰符继承方式是 public、protected 或 private 其中的一个,用来修饰每个基类,各个基类之间用逗号分隔,如上所示。现在让我们一起看看下面的实例:

实例

#include <iostream> using namespace std; // 基类 Shape class Shape { public: void setWidth(int w) { width = w; } void setHeight(int h) { height = h; } protected: int width; int height; }; // 基类 PaintCost class PaintCost { public: int getCost(int area) { return area * 70; } }; // 派生类 class Rectangle: public Shape, public PaintCost { public: int getArea() { return (width * height); } }; int main(void) { Rectangle Rect; int area; Rect.setWidth(5); Rect.setHeight(7); area = Rect.getArea(); // 输出对象的面积 cout << "Total area: " << Rect.getArea() << endl; // 输出总花费 cout << "Total paint cost: $" << Rect.getCost(area) << endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Total area: 35
Total paint cost: $2450

#include <iostream>
using namespace std; // 基类
Shape class Shape
{ public:
  void setWidth(int w) { width = w; }
  void setHeight(int h) { height = h; }
 
protected:
  int width;
  int height;
}; // 基类
 
 
PaintCost class
PaintCost
{ public:
  int getCost(int area){ return area * 70; }
}; // 派生类
 
class Rectangle:
public Shape,
public PaintCost { public: int getArea() { return (width * height); } };
 
int main(void)
{
Rectangle Rect;
int area;
Rect.setWidth(5);
Rect.setHeight(7);
area = Rect.getArea(); // 输出对象的面积
cout << "Total area: " << Rect.getArea() << endl; // 输出总花费
cout << "Total paint cost: $" << Rect.getCost(area) << endl;
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Total area: 35
Total paint cost: $2450

 

5. C++ 重载运算符和重载函数

C++ 允许在同一作用域中的某个函数运算符指定多个定义,分别称为函数重载运算符重载

重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明,但是它们的参数列表和定义(实现)不相同。

当您调用一个重载函数重载运算符时,编译器通过把您所使用的参数类型与定义中的参数类型进行比较,决定选用最合适的定义。选择最合适的重载函数或重载运算符的过程,称为重载决策

C++ 中的函数重载

在同一个作用域内,可以声明几个功能类似的同名函数,但是这些同名函数的形式参数(指参数的个数、类型或者顺序)必须不同。您不能仅通过返回类型的不同来重载函数。

下面的实例中,同名函数 print() 被用于输出不同的数据类型:

实例

#include <iostream> using namespace std; class printData { public: void print(int i) { cout << "整数为: " << i << endl; } void print(double f) { cout << "浮点数为: " << f << endl; } void print(char c[]) { cout << "字符串为: " << c << endl; } }; int main(void) { printData pd; // 输出整数 pd.print(5); // 输出浮点数 pd.print(500.263); // 输出字符串 char c[] = "Hello C++"; pd.print(c); return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

整数为: 5
浮点数为: 500.263
字符串为: Hello C++

 

C++ 中的运算符重载

您可以重定义或重载大部分 C++ 内置的运算符。这样,您就能使用自定义类型的运算符。

重载的运算符是带有特殊名称的函数,函数名是由关键字 operator 和其后要重载的运算符符号构成的。与其他函数一样,重载运算符有一个返回类型和一个参数列表。

Box operator+(const Box&);

声明加法运算符用于把两个 Box 对象相加,返回最终的 Box 对象。大多数的重载运算符可被定义为普通的非成员函数或者被定义为类成员函数。如果我们定义上面的函数为类的非成员函数,那么我们需要为每次操作传递两个参数,如下所示:

Box operator+(const Box&, const Box&);

下面的实例使用成员函数演示了运算符重载的概念。在这里,对象作为参数进行传递,对象的属性使用 this 运算符进行访问,如下所示:

实例

#include <iostream> using namespace std; class Box { public: double getVolume(void) { return length * breadth * height; } void setLength( double len ) { length = len; } void setBreadth( double bre ) { breadth = bre; } void setHeight( double hei ) { height = hei; } // 重载 + 运算符,用于把两个 Box 对象相加 Box operator+(const Box& b) { Box box; box.length = this->length + b.length; box.breadth = this->breadth + b.breadth; box.height = this->height + b.height; return box; } private: double length; // 长度 double breadth; // 宽度 double height; // 高度 }; // 程序的主函数 int main( ) { Box Box1; // 声明 Box1,类型为 Box Box Box2; // 声明 Box2,类型为 Box Box Box3; // 声明 Box3,类型为 Box double volume = 0.0; // 把体积存储在该变量中 // Box1 详述 Box1.setLength(6.0); Box1.setBreadth(7.0); Box1.setHeight(5.0); // Box2 详述 Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0); // Box1 的体积 volume = Box1.getVolume(); cout << "Volume of Box1 : " << volume <<endl; // Box2 的体积 volume = Box2.getVolume(); cout << "Volume of Box2 : " << volume <<endl; // 把两个对象相加,得到 Box3 Box3 = Box1 + Box2; // Box3 的体积 volume = Box3.getVolume(); cout << "Volume of Box3 : " << volume <<endl; return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

可重载运算符/不可重载运算符

下面是可重载的运算符列表:

双目算术运算符 + (加),-(减),*(乘),/(除),% (取模)
关系运算符 ==(等于),!= (不等于),< (小于),> (大于>,<=(小于等于),>=(大于等于)
逻辑运算符 ||(逻辑或),&&(逻辑与),!(逻辑非)
单目运算符 + (正),-(负),*(指针),&(取地址)
自增自减运算符 ++(自增),--(自减)
位运算符 | (按位或),& (按位与),~(按位取反),^(按位异或),,<< (左移),>>(右移)
赋值运算符 =, +=, -=, *=, /= , % = , &=, |=, ^=, <<=, >>=
空间申请与释放 new, delete, new[ ] , delete[]
其他运算符 ()(函数调用),->(成员访问),,(逗号),[](下标)

下面是不可重载的运算符列表:

  • .:成员访问运算符
  • .*, ->*:成员指针访问运算符
  • :::域运算符
  • sizeof:长度运算符
  • ?::条件运算符
  • #: 预处理符号

 

6. C++ 多态

多态按字面的意思就是多种形态。当类之间存在层次结构,并且类之间是通过继承关联时,就会用到多态。

C++ 多态意味着调用成员函数时,会根据调用函数的对象的类型来执行不同的函数。

下面的实例中,基类 Shape 被派生为两个类,如下所示:

实例

#include <iostream> using namespace std; class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } int area() { cout << "Parent class area :" <<endl; return 0; } }; class Rectangle: public Shape{ public: Rectangle( int a=0, int b=0):Shape(a, b) { } int area () { cout << "Rectangle class area :" <<endl; return (width * height); } }; class Triangle: public Shape{ public: Triangle( int a=0, int b=0):Shape(a, b) { } int area () { cout << "Triangle class area :" <<endl; return (width * height / 2); } }; // 程序的主函数 int main( ) { Shape *shape; Rectangle rec(10,7); Triangle tri(10,5); // 存储矩形的地址 shape = &rec; // 调用矩形的求面积函数 area shape->area(); // 存储三角形的地址 shape = &tri; // 调用三角形的求面积函数 area shape->area(); return 0; }

当上面的代码被编译和执行时,它会产生下列结果:

Parent class area
Parent class area

导致错误输出的原因是,调用函数 area() 被编译器设置为基类中的版本,这就是所谓的静态多态,或静态链接 - 函数调用在程序执行前就准备好了。有时候这也被称为早绑定,因为 area() 函数在程序编译期间就已经设置好了。

但现在,让我们对程序稍作修改,在 Shape 类中,area() 的声明前放置关键字 virtual,如下所示:

class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } virtual int area() { cout << "Parent class area :" <<endl; return 0; } };

修改后,当编译和执行前面的实例代码时,它会产生以下结果:

Rectangle class area
Triangle class area

此时,编译器看的是指针的内容,而不是它的类型。因此,由于 tri 和 rec 类的对象的地址存储在 *shape 中,所以会调用各自的 area() 函数。

正如您所看到的,每个子类都有一个函数 area() 的独立实现。这就是多态的一般使用方式。有了多态,您可以有多个不同的类,都带有同一个名称但具有不同实现的函数,函数的参数甚至可以是相同的。

虚函数

虚函数 是在基类中使用关键字 virtual 声明的函数。在派生类中重新定义基类中定义的虚函数时,会告诉编译器不要静态链接到该函数。

我们想要的是在程序中任意点可以根据所调用的对象类型来选择调用的函数,这种操作被称为动态链接,或后期绑定

纯虚函数

您可能想要在基类中定义虚函数,以便在派生类中重新定义该函数更好地适用于对象,但是您在基类中又不能对虚函数给出有意义的实现,这个时候就会用到纯虚函数。

我们可以把基类中的虚函数 area() 改写如下:

class Shape { protected: int width, height; public: Shape( int a=0, int b=0) { width = a; height = b; } // pure virtual function virtual int area() = 0; };

= 0 告诉编译器,函数没有主体,上面的虚函数是纯虚函数

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

==

 

 

 

posted @ 2018-08-15 14:58  AHU-WangXiao  阅读(239)  评论(0编辑  收藏  举报