深度学习课程笔记(一)CNN 卷积神经网络
深度学习课程笔记(一)CNN 解析篇
相关资料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html
首先提到 Why CNN for Image ?
综合上述三个特点,我们可以看到图像识别有如下的特色:
=================================== 分割线 =======================================================
以上就是整体上来感受下深度神经网络,接下来我们仔细分析下每一个部件:
1. Convolution Layer
所谓卷积层,就是将两个矩阵进行卷积操作,这里的两个矩阵分别是指 卷积核(filter)和每一个与filter相同大小的图像区域。这里的卷积操作就是 点成(矩阵对应元素相乘)。
然后没执行一次这样的操作,就滑动一次filter,然后进行下一个区域的卷积操作,直至整幅图像被处理完毕。滑动的幅度,称为stride (步长)。如下图所示:
然后再用另一组 filter 对该图像进行类似的处理。一张图像可以用多个卷积核来进行处理。上面提到的图像是 gray image,而对于彩色图像来说,是三个通道的。这个没有关系,我们将三个 filter 作为一组,分别对三个 channel 进行卷积,就可以了。如下图所示:
2. Pooling Layer:
所谓的池化层,就是对得到的 feature map 进行降采样处理,常见的有,mean, max pooling operation 等。即:在一个区域内,如:2*2 的区域,max pooling 就是选择一个 max value 来代表这个区域,其余的直接扔掉。mean 就是取这些 value 的平均值来代替这些。当然也可以同时进行 max 和 mean pooling 操作,来完成降采样的过程。
需要说明的是,max pooling 其实并不是必须的,如:在AlphaGo 中,使用的网络结构并没有使用 max pooling layer,因为使用了这个层,就会丢失一定的信息,而实际上 棋盘丢失了某些信息,结果是无法想象的。因为这可能会导致不同的局面。。。这是李宏毅老师的解释。。。但是,我觉得,这只是整个分辨率降低了而已,没有那么大的影响吧???如果有小伙伴知道更详细的答案,请不吝赐教。
3. Fully Connected Layer:
全连接层 也是常见的 CNN 组件,一般用来输出一组向量。而 fc layer 和 convolutional layer 可以看做是类似的操作,为何这么说呢?且看下图:
上图中,我们将 filter 中不同的 weight 设置为不同的颜色,在进行卷积操作的时候,我们进行对应元素点乘操作,从而得到 3 。我们将对应图像区域中的元素标上标号可以看出,我们这里仅仅和 9 个输入元素进行了连接,而不是所有的元素。所以,这里 convolutional layer 是 sparse connected。同时,在移动之后的卷积操作也是类似,而且这两个过程是共享权重的,都分享了同一个 filter 1. 这样就可以降低参数的数量,使得训练和测试都可以尽量快速的执行。
这里还有一个比较迷糊人的问题是,卷积层 出来的 feature map 是一个立方体矩阵,而 fc layer 处理的是 vector,这两者之间是怎么接起来的呢?看下图:
是的,你没有看错,两者之间有一个 flatten 的操作,即:将 feature map 按照每一个 map 展开,然后拼接在一起,构成一个大的 vector,再进行处理。整个过程如下所示:
4. 激活层:
常见的激活函数,有 sigmoid, ReLU, PReLU 等等。这些非线性函数被引入到 CNN 当中来,使得该模型具有非线性拟合能力。从而,可以执行更加复杂多样的任务。
========================================== 分割线 =================================================
CNN 常见的应用除了在图像领域之外,还有语音和自然语言领域。你可能比较纳闷,CNN 不是专门用来处理图像的吗?
宏观的来看,这只是一个执行 weighting operation 的网络,是可以处理任何 matrix 形式的东西的。例如:将语音和文本转化为 matrix 的形式,就可以利用 CNN 来进行特征的学习,从而完成后续的研究任务,像语音识别,等等。
======================== 完毕 ==============================
基础的图像识别的例子 ------ pytorch 版本:
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) model = Net() if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, args.epochs + 1): train(epoch) test()