论文笔记之:Co-saliency Detection via A Self-paced Multiple-instance Learning Framework

 

Co-saliency Detection via A Self-paced Multiple-instance Learning Framework 

T-PAMI  2016 

 

  摘要:Co-saliency detection 从一组图像中提取出共同显著的物体。一方面,传统的检测方法严重依赖于手工设计的距离度量来反应协同显著区域有效的属性。另一方面,大部分的当前方法都是无监督的。在实际场景中,效果不会很好,因为缺乏一种 robust 的学习机制 来充分利用每一张图像的 weak labels。为了解决上述问题,本文提出一种 SP-MIL framework 来进行 co-saliency detection,将多示例学习 和 自步学习结合到一个框架中去。特别的,对于第一个问题,将协同显著检测 作为 MIL paradigm 来学习具有判别性的分类器,进行 “instance-level” 的 Co-saliency detection。这个 MIL 成分可以使得我们的方法能够自动的产生合适的距离度量来衡量 intra-image contrast 和 inter-image consistency, 以一种纯正的 self-learning way的方式进行检测。对于第二个问题,the embedded SPL paradigm 能够在协同显著性检测的弱监督的方式下,消除数据的模糊性;并且在复杂场景下,能够引导鲁棒的学习方式。

 

   一个很自然的问题就是需要弄清楚,Co-saliency detectionMIL problem 之间的关系,从而在第一个问题的条件下,利用后者以一种 self-learning 的策略去产生 insightful metrics。特别的,在 Co-saliency detection 的问题上,带有特定种类的协同显著物体的图像 可以看做是 positive bags,不带的,则认为是 negative bags,图像中超像素区域看做是 instance。在这种情况下,Co-saliency detection 的问题就可以自然的看做是 MIL problem。基础的,the instance-level MIL 目标是学习分类器,使得 positive instances 和 每一个 positive bags 的  intra-class distance 尽可能的小,而最大化 positive 和 negative instances 的 inter-class distance。通过这种方式学习到的分类器可以用作去预测 Co-salient objects 的位置 in the instance (super-pixel) level。通过执行 MIL 来进行 Co-saliency detection,the insightful metrics

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

posted @ 2016-11-04 09:37  AHU-WangXiao  阅读(1774)  评论(0编辑  收藏  举报