代码备份:处理 SUN397 的代码,将其分为 80% 训练数据 以及 20% 的测试数据
处理SUN397 的代码,将其分为80% 训练数据以及20% 的测试数据 2016-07-27 1 %% Code for Process SUN397 Scene Classification 2 % Just the a part : 24 kinds and 6169 images total 3 % used for train a initial classifier and predict the additional dataset. 4 clc; 5 impath = '/home/wangxiao/Downloads/SUN397/SUN397/a/'; 6 files = dir(impath); 7 label = -1 ; 8 9 train_fid = fopen('/home/wangxiao/Downloads/SUN397/selected_sun/train_list.txt', 'a'); 10 test_fid = fopen('/home/wangxiao/Downloads/SUN397/selected_sun/test_list.txt', 'a'); 11 12 train_im_savePath = '/home/wangxiao/Downloads/SUN397/selected_sun/train_images/' ; 13 test_im_savePath = '/home/wangxiao/Downloads/SUN397/selected_sun/test_images/' ; 14 15 for i = 3:size(files, 1) 16 % disp( [' ==> disp current ', num2str(i-2), '/', num2str(size(files, 1) - 2) , ' waiting . . . ' ]) ; 17 label = label + 1; 18 category = files(i).name ; 19 newPath = [impath, category, '/'] ; 20 images = dir([newPath, '*.jpg']) ; 21 22 for j = 1:size(images, 1) 23 disp( [' ==> deal with Class: ', num2str(i-2), ' ==> disp image: ', num2str(j), '/', num2str(size(images, 1) - 2) , ' waiting . . . ' ]) ; 24 num_per_kind = size(images, 1) - 2 ; 25 random_num = randperm(size(images, 1)) ; 26 27 num_train = round( num_per_kind * 0.8 ) ; %% number of train data 28 num_test = round ( num_per_kind * 0.2 ) ; %% number of test data 29 30 %% train data 31 32 if j <= num_train 33 34 idx = random_num(j) ; 35 trainImage_name = images(idx).name ; 36 im = imread([newPath, trainImage_name]); 37 im = imresize(im, [256, 256]) ; 38 imwrite( im, [train_im_savePath, trainImage_name]) ; 39 fprintf(train_fid, '%s ' , num2str(trainImage_name) ) ; 40 fprintf(train_fid, '%s ', ' ') ; 41 fprintf(train_fid, '%s \n', num2str(label)) ; 42 else 43 if j < num_per_kind 44 idx2 = random_num(j) ; 45 testImage_name = images(idx2).name ; 46 im2 = imread([newPath, testImage_name]); 47 im2 = imresize(im2, [227, 227]) ; 48 imwrite( im2, [test_im_savePath, testImage_name]) ; 49 fprintf(test_fid, '%s ' , num2str(testImage_name) ) ; 50 fprintf(test_fid, '%s ', ' ') ; 51 fprintf(test_fid, '%s \n', num2str(label)) ; 52 else 53 break; 54 end 55 end 56 57 58 59 60 61 62 end 63 64 end
path = '/home/wangxiao/Downloads/SUN397/Sun-100/'; file1 = importdata([path, 'Sun_100_Labeled_Train_0.5_.txt' ]); file2 = importdata([path, 'Sun_100_UnLabel_Train_0.5_.txt' ]); file3 = importdata([path, 'Sun_100_Test_0.5_.txt' ]); %% return the index of searched vector. [C, ia, ic] = unique(file1.data) ; labelMatrix = zeros(size(file1.data)) ; for i = 1:size(ia, 1) count = i-1; index_1 = ia(i, 1) ; % start index index_2 = ia(i+1, 1) ; % end index labelMatrix(index_1:index_2, 1) = count ; end % select 80 classes. select_labelMatrix = labelMatrix(1:9060) ; %% return the index of searched vector. [C, ia, ic] = unique(file2.data) ; labelMatrix = zeros(size(file2.data)) ; for i = 1:size(ia, 1) count = i-1; index_1 = ia(i, 1) ; % start index index_2 = ia(i+1, 1) ; % end index labelMatrix(index_1:index_2, 1) = count ; end % select 80 classes. select_labelMatrix_2 = labelMatrix(1:9180) ; %% return the index of searched vector. [C, ia, ic] = unique(file3.data) ; labelMatrix = zeros(size(file3.data)) ; for i = 1:size(ia, 1) count = i-1; index_1 = ia(i, 1) ; % start index index_2 = ia(i+1, 1) ; % end index labelMatrix(index_1:index_2, 1) = count ; end % select 80 classes. select_labelMatrix_3 = labelMatrix(1:4560) ; %% save the selected 80 classes into txt files. savePath = '/home/wangxiao/Downloads/SUN397/Sun-100/'; fid1 = fopen([savePath, 'Sun_80_50%_Labeled_data.txt'], 'a'); fid2 = fopen([savePath, 'Sun_80_50%_Unlabeled_data.txt'], 'a'); fid3 = fopen([savePath, 'Sun_80_50%_test_data.txt'], 'a'); for i = 1:size(select_labelMatrix, 1) imageName = file1.textdata{i, 1} ; imageLabel = select_labelMatrix(i, 1) ; fprintf(fid1, '%s ', num2str(imageName)) ; fprintf(fid1, '%s\n ', num2str(imageLabel)) ; end for i = 1:size(select_labelMatrix_2, 1) imageName = file2.textdata{i, 1} ; imageLabel = select_labelMatrix_2(i, 1) ; fprintf(fid2, '%s ', num2str(imageName)) ; fprintf(fid2, '%s\n ', num2str(imageLabel)) ; end for i = 1:size(select_labelMatrix_3, 1) imageName = file3.textdata{i, 1} ; imageLabel = select_labelMatrix_3(i, 1) ; fprintf(fid3, '%s ', num2str(imageName)) ; fprintf(fid3, '%s\n ', num2str(imageLabel)) ; end
Stay Hungry,Stay Foolish ...