Recent Advances in Vision and Language PreTrained Models (VL-PTMs)

Recent Advances in Vision and Language PreTrained Models (VL-PTMs)

Maintained by WANG Yue (yuewang@cse.cuhk.edu.hk). Last update on 2020/03/26.

 

Sourcehttps://github.com/yuewang-cuhk/awesome-vision-language-pretraining-papers  

Table of Contents

Image-based VL-PTMs

Representation Learning

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks, NeurIPS 2019 [code]

LXMERT: Learning Cross-Modality Encoder Representations from Transformers, EMNLP 2019 [code]

VL-BERT: Pre-training of Generic Visual-Linguistic Representations, ICLR 2020 [code]

VisualBERT: A Simple and Performant Baseline for Vision and Language, arXiv 2019/08 [code]

Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training, AAAI 2020

Unified Vision-Language Pre-Training for Image Captioning and VQA, AAAI 2020, [code], (VLP)

UNITER: Learning Universal Image-text Representations, arXiv 2019/09 [code]

Task-specific

VCR: Fusion of Detected Objects in Text for Visual Question Answering, EMNLP 2019, [code], (B2T2)

TextVQA: Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA, CVPR 2020, [code], (M4C)

VisDial: Large-scale Pretraining for Visual Dialog: A Simple State-of-the-Art Baseline, arXiv 2019/12, [code], (VisDial-BERT)

VLN: Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training, CVPR 2020, [code], (PREVALENT)

Text-image retrieval: ImageBERT: Cross-Modal Pre-training with Large-scale Weak-supervised Image-text Data, arXiv 2020/01

Image captioning: XGPT: Cross-modal Generative Pre-Training for Image Captioning, arXiv 2020/03

Other Analysis

Multi-task Learning, 12-in-1: Multi-Task Vision and Language Representation Learning, CVPR 2020, [code]

Social Bias in VL Embedding, Measuring Social Biases in Grounded Vision and Language Embeddings, arXiv 2020/02, [code]

Video-based VL-PTMs

VideoBERT: A Joint Model for Video and Language Representation Learning, ICCV 2019

Learning Video Representations Using Contrastive Bidirectional Transformers, arXiv 2019/06, (CBT)

UniViLM: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation, arXiv 2020/02

Other Resources

posted @ 2020-03-28 20:45  AHU-WangXiao  阅读(593)  评论(0编辑  收藏  举报