AdaptIS: Adaptive Instance Selection Network

AdaptIS: Adaptive Instance Selection Network

2019-09-19 12:58:07

Paperhttps://arxiv.org/pdf/1909.07829.pdf 

Code (MXNet)https://github.com/saic-vul/adaptis 

Pretrained model for ToyV1: https://drive.google.com/open?id=1IuJUh0JvbKYILBxCeO2h6U4LG-9DoTHi
Pretrained model for ToyV2: https://drive.google.com/open?id=1RxepfpJF5gRpRNYu1urdV748suF3TL5k

 

 

Related Paper

Panoptic Segmentation, Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollar 

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Paper] [Code] [Blog

An intriguing failing of convolutional neural networks and the CoordConv solution [Paper] [Code] [Blog]  

 

1. Background and Motivation

本文提出一种新的分割方式,即:给出一个 BBox,该方法可以将该位置的物体分割出来,而不是全部分割出来。示意图如下所示:

 

本文所提出方法的名称为:AdaptIS,不依赖于 bounding box proposal。而是直接优化目标分割精度。给定一张图像 I 和 一个固定的 point proposal (x, y),作者直接优化目标损失函数。我们利用一个 pixel-wise loss 来计算 AdaptIS 预测 和  target object 的 mask。

 

 

 

posted @ 2019-09-19 13:00  AHU-WangXiao  阅读(559)  评论(0编辑  收藏  举报