Pytorch_模型转Caffe(一)解析caffemodel与prototxt
目录
Pytorch_模型转Caffe(一)
1.Caffe简介
2.Caffe进行目标检测任务
- 利用ssd进行目标检测任务,主要步骤如下(重点是模型的移植)
3.Caffe五大组件
4.caffemodel
- 包含了prototxt(除了solver.prototxt) 和 weights bias
prototxt 以文本的方式存储网络结构 - 通过创建
caffe_pb2.NetParameter()
对象,获取caffemodel内容
model = caffe_pb2.NetParameter()
f = open(caffemodel_filename, 'rb')
model.ParseFromString(f.read())
- 循环获取每个layer下的参数
model.layer是每层的信息
## 逐个解析prototxt 内容 但有点复杂
for i,layer in enumerate(Tarpa_model.layer):
tops = layer.top
bottoms = layer.bottom
top_str = ''
bottom_str =''
transform_param_str = ''
data_param_str = ''
annotated_data_param_str=''
for top in layer.top:
top_str += '\ttop:"{}"\n'.format(top)
for bottom in layer.bottom:
bottom_str += '\tbottom:"{}"\n'.format(bottom)
# transform
if str(layer.transform_param)!='':
transform_param_str = str(layer.transform_param).split('\n')
new_str_trans =''
for item in transform_param_str:
new_str_trans += '\t\t'+str(item) + '\n' if item!='' else ''
# print(new_str_trans)
transform_param_str = '\t' +'transform_param {\n'+ new_str_trans +'\t}'+'\n'
# data_param
if str(layer.data_param) != '':
data_param_str = str(layer.data_param).split('\n')
new_str_data_param =''
for item in data_param_str:
new_str_data_param += '\t\t'+str(item) + '\n' if item!='' else ''
data_param_str = '\t' +'data_param {\n'+ new_str_data_param +'\t}'+'\n'
# annotated_data_param
if str(layer.annotated_data_param) != '':
annotated_data_param_str = str(layer.annotated_data_param).split('\n')
new_str_annotated_data_param =''
for item in annotated_data_param_str:
new_str_annotated_data_param += '\t\t'+str(item) + '\n' if item!='' else ''
annotated_data_param_str = '\t' +'annotated_data_param {\n'+ new_str_annotated_data_param +'\t}'+'\n'
- 解析后的部分结果
### train.prototxt 卷积层
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
5.通过caffemodel解析train.prototxt
- 旨在学习了解caffemodel中的数据存储结构
采用剔除法,先保存所有layer,之后删除blobs和其他无用信息
import caffe.proto.caffe_pb2 as caffe_pb2
caffemodel_filename = src_path + '/***.caffemodel'
Tarpa_model = caffe_pb2.NetParameter()
f = open(caffemodel_filename, 'rb')
Tarpa_model.ParseFromString(f.read())
f.close()
print(Tarpa_model.name)
print(Tarpa_model.input)
# print(Tarpa_model.layer)
# print(type(Tarpa_model.layer))
f = open('_caffemodel_.log','w')
f.write('name: "{}"'.format(Tarpa_model.name)+'\n')
for i,layer in enumerate(Tarpa_model.layer):
transform_param_str = str(layer).split('\n')
new_str_trans =''
comtinue_flag = 0
for item in transform_param_str:
if item == 'phase: TRAIN':
continue
if comtinue_flag and '}'in item:
continue
comtinue_flag = 0
if 'blobs' in item or 'data:'in item or 'shape'in item or 'dim:'in item:
comtinue_flag = 1
continue
new_str_trans += '\t'+str(item) + '\n' if item!='' else ''
layer_str = 'layer {' +'\n'+\
new_str_trans+\
'}'+'\n'
f.write(str(layer_str))
print(i)
# if i ==2:
# break
f.close()
6.caffemodel解析现存问题
在生成.prototxt后可以看出有很多split字段,暂未得到解决
layer {
name: "data_data_0_split"
type: "Split"
bottom: "data"
top: "data_data_0_split_0"
top: "data_data_0_split_1"
top: "data_data_0_split_2"
top: "data_data_0_split_3"
top: "data_data_0_split_4"
top: "data_data_0_split_5"
top: "data_data_0_split_6"
top: "data_data_0_split_7"
}
posted on 2020-12-17 09:41 wangxiaobei2019 阅读(3128) 评论(0) 编辑 收藏 举报