LeetCode141 Linked List Cycle. LeetCode142 Linked List Cycle II
链表相关题
141. Linked List Cycle
Given a linked list, determine if it has a cycle in it.
Follow up:
Can you solve it without using extra space? (Easy)
分析:
采用快慢指针,一个走两步,一个走一步,快得能追上慢的说明有环,走到nullptr还没有相遇说明没有环。
代码:
1 /** 2 * Definition for singly-linked list. 3 * struct ListNode { 4 * int val; 5 * ListNode *next; 6 * ListNode(int x) : val(x), next(NULL) {} 7 * }; 8 */ 9 class Solution { 10 public: 11 bool hasCycle(ListNode *head) { 12 if (head == NULL) { 13 return 0; 14 } 15 ListNode* slow = head; 16 ListNode* fast = head; 17 while (fast != nullptr && fast->next != nullptr) { 18 slow = slow->next; 19 fast = fast->next->next; 20 if (slow == fast) { 21 return true; 22 } 23 } 24 return false; 25 } 26 };
142. Linked List Cycle II
Given a linked list, return the node where the cycle begins. If there is no cycle, return null
.
Note: Do not modify the linked list.
Follow up:
Can you solve it without using extra space?(Medium)
分析:
1)同linked-list-cycle-i一题,使用快慢指针方法,判定是否存在环,并记录两指针相遇位置(Z);
2)将两指针分别放在链表头(X)和相遇位置(Z),并改为相同速度推进,则两指针在环开始位置相遇(Y)。
证明如下:
如下图所示,X,Y,Z分别为链表起始位置,环开始位置和两指针相遇位置,则根据快指针速度为慢指针速度的两倍,可以得出:
2*(a + b) = a + b + n * (b + c);即
a=(n - 1) * b + n * c = (n - 1)(b + c) +c;
注意到b+c恰好为环的长度,故可以推出,如将此时两指针分别放在起始位置和相遇位置,并以相同速度前进,当一个指针走完距离a时,另一个指针恰好走出 绕环n-1圈加上c的距离。
故两指针会在环开始位置相遇。
代码:
1 /** 2 * Definition for singly-linked list. 3 * struct ListNode { 4 * int val; 5 * ListNode *next; 6 * ListNode(int x) : val(x), next(NULL) {} 7 * }; 8 */ 9 class Solution { 10 public: 11 ListNode *detectCycle(ListNode *head) { 12 if(head == nullptr) { 13 return 0; 14 } 15 ListNode* slow = head; 16 ListNode* fast = head; 17 while (fast != nullptr && fast->next != nullptr) { 18 slow = slow -> next; 19 fast = fast -> next -> next; 20 if(slow == fast){ 21 break; 22 } 23 } 24 if (fast == nullptr || fast->next == nullptr) { 25 return nullptr; 26 } 27 slow = head; 28 while (slow != fast) { 29 slow = slow->next; 30 fast = fast->next; 31 } 32 return slow; 33 } 34 };