LeetCode5 Longest Palindromic Substring

题意:

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.  (Medium)

 

分析:

采用动态规划,dp[i][j]表示从s[i]到s[j]的字串是否回文,然后按照字串长度进行遍历,如果s[i] == s[j] && dp[i + 1][j - 1] == 1,则dp[i][j] = 1

并更新起始位置和最大长度。

初始化除了要将dp[i][i] i=0,1,2...n-1初始化外,还需要初始化dp[i][i+1]

最终得到维护好的最大字串起始位置和长度,返回该字串。

 

代码:

 1 class Solution {
 2 public:
 3     string longestPalindrome(string s) {
 4         int dp[1005][1005] = {0};
 5         int start = 0, length = 1;
 6         for (int i = 0; i < s.size(); ++i) {
 7             dp[i][i] = 1;
 8         }
 9         for (int i = 0; i < s.size() - 1; ++i) {
10             if (s[i] == s[i + 1]) {
11                 dp[i][i + 1] = 1;
12                 start = i;
13                 length = 2;
14             }
15         }
16         for (int k = 2; k < s.size(); ++k) {
17             for (int i = 0; i < s.size() - k; ++i) {
18                 if (s[i] == s[i + k] && dp[i + 1][i + k - 1] == 1) {
19                     dp[i][i + k] = 1;
20                     start = i;
21                     length = k + 1;
22                 }
23             }
24         }
25         return s.substr(start,length);
26     }
27 };

 

时间复杂度 O(n^2), 空间复杂度 O(n^2);

解法2:

考虑不采用dp数组,节省空间复杂度为O(1);

对每个每个节点作为初始位置,利用helper函数,开始向外扩展,如果满足s[left] == s[right], left--; right++继续判定;

直到不满足条件位置或边界,并更新最大长度和初始位置。

注意拓展节点时除了拓展单一节点情况,还需要拓展两个节点开始的情况 (与dp的初始化条件类似);

 

代码:

 1 class Solution {
 2 private:
 3     int helper(const string& s, int left, int right) {
 4         int length = 0;
 5         while (left >= 0 && right < s.size() && s[left] == s[right]) {
 6             length = right - left + 1;
 7             left--;
 8             right++;
 9         }
10         return length;
11     }
12 public:
13     string longestPalindrome(string s) {
14         int start = 0, length = 0;
15         for (int i = 0; i < s.size() ; ++i) {
16             int l1 = helper(s, i, i);
17             if (l1 > length) {
18                 length = l1;
19                 start = i - (length / 2);
20             }
21         }    
22         for (int i = 0; i < s.size() - 1; ++i) {
23             int l2 = helper(s, i, i+1);
24             if (l2 > length) {
25                 length = l2;
26                 start = i - (length - 2) / 2;
27             }
28         }
29         return s.substr(start, length);
30     }
31 };

 

posted @ 2016-08-02 21:34  wangxiaobao1114  阅读(151)  评论(0编辑  收藏  举报