PCA降维实验代码

实验需要提取数据的空间信息,所以要对光谱进行降维,使用主成分分析算法,样例代码备份如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 18 10:35:43 2019
 
@author: admin
"""
 
import numpy as np
from scipy.io import loadmat
#import spectral
from sklearn.decomposition import PCA
 
input_hsi = loadmat('dataset/huston/houston15.mat')['data']
input_lidar=loadmat('dataset/huston/houston_Lidar15.mat')['data']
train_label = loadmat('dataset/huston/houston15_mask_train.mat')['mask_train']
test_label=loadmat('dataset/huston/houston15_mask_test.mat')['mask_test']
 
#高光谱降维处理
array_x1=input_hsi.reshape(np.prod(input_hsi.shape[:2]),np.prod(input_hsi.shape[2:]))
pca=PCA(n_components=30)
array_x2=pca.fit_transform(array_x1)
print(array_x2.shape)
pca_hsi=array_x2.reshape(input_hsi.shape[0],input_hsi.shape[1],array_x2.shape[1])
 
 
print('hsi shape:',input_hsi.shape)
print('pca hsi shape:',pca_hsi.shape)
print('lidar shape:',input_lidar.shape)

  实验数据是houston高光谱数据和lidar数据,数据的原始维度和降维后的维度如下图所示

 在进行pac降维之前需要先对实验reshape,因为pca只支持二维数据降维,将前两维(平面)reshape成列向量就变成了(664845,30),降维结束后再reshape回去,注意reshape时候第三个维度已经不是原来的144维了,所以在reshape回去时这样写是会报错的。input_hsi.shape[2]是原始数据的第三个维度为144,正确数值是30,即降维之后的维度,也就是array_x2.shape[1]

1
array_x3=array_x2.reshape(input_hsi.shape[0],input_hsi.shape[1],input_hsi.shape[2])

  

 

posted @   Wangtn  阅读(1410)  评论(2编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
点击右上角即可分享
微信分享提示