再谈spark部署搭建和企业级项目接轨的入门经验(博主推荐)
进入我这篇博客的博友们,相信你们具备有一定的spark学习基础和实践了。
先给大家来梳理下。spark的运行模式和常用的standalone、yarn部署。这里不多赘述,自行点击去扩展。
2、Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master、slave1和slave2)
3、Spark standalone简介与运行wordcount(master、slave1和slave2)
4、Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)
5、Spark on YARN简介与运行wordcount(master、slave1和slave2)(博主推荐)
正文开始
想说的是,对于spark的配置文件,即spark-env.sh。压根可以不做任何修改和配置。(当然我指的是常用和固定的那些参数)
#!/bin/sh home=$(cd `dirname $0`; cd ..; pwd) bin_home=$home/bin conf_home=$home/conf logs_home=$home/logs data_home=$home/data lib_home=$home/lib #服务器配置文件 configFile=${conf_home}/my1.properties spark_submit=/home/hadoop/spark/bin/spark-submit
#!/bin/sh deleteCheckpoint=$1 home=$(cd `dirname $0`; cd ..; pwd) . ${home}/bin/common.sh hdfs dfs -rm -r /spark-streaming/behavior/stop if [ "$deleteCheckpoint" == "delck" ]; then hdfs dfs -rm -r /spark-streaming/checkpoint/behavior fi ${spark_submit} \ --master yarn \ --deploy-mode cluster \ --name behavior \ --driver-memory 512M \ --executor-memory 512M \ --class com.djt.spark.streaming.UserBehaviorStreaming \ ${lib_home}/behavior-stream-jar-with-dependencies.jar ${configFile} \ >> ${logs_home}/behavior.log 2>&1 & echo $! > ${logs_home}/behavior_stream.pid
#!/bin/sh home=$(cd `dirname $0`; cd ..; pwd) . ${home}/bin/common.sh hdfs dfs -mkdir -p /spark-streaming/behavior/stop
然后,直接将这个本地写好的目录,上传到集群
后续很简单,不多说。