前馈神经网络如何选择隐藏层的数量
隐藏层数
一般是一层,因为大部分情况下都够用了。理论上说,一个有两个隐藏层的前馈神经网络可以表示任意的非线性决策边界。所以,可以说1到2个隐藏层。
隐藏层中的节点数
1.输入层节点数 = 输入向量维数
2.输出层节点数 = 测试分类个数,或者预测的节点数
3隐含层节点数计算:
(1)假设输入层的节点数是Nx,输出层的节点数Ny,那么每个隐藏层中的节点数Nh一般在Nx和Ny之间,有人推荐Nh = sqrt(NxNy),也有人推荐 Nh=Ns / c(Nx+Ny),其中Ns是样本的数量,c是一个常数,通常选择个位数。
(2)
当然以上都是根据经验而来的,具体怎么选,还需要针对具体问题进行分析然后做交叉验证。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~