剑指offer之【丑数】☆

题目:

  丑数

链接:

  https://www.nowcoder.com/practice/6aa9e04fc3794f68acf8778237ba065b?tpId=13&tqId=11186&tPage=2&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-ranking

题目描述:

  把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。

思路:

  试图只计算丑数,而不在非丑数的整数上花费时间。根据丑数的定义,丑数应该是另一个丑数乘以23或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数。里面的每一个丑数是前面的丑数乘以23或者5得到的。

  这种思路的关键在于怎样确保数组里面的丑数是排好序的。我们假设数组中已经有若干个丑数,排好序后存在数组中。我们把现有的最大丑数记做M。现在我们来生成下一个丑数,该丑数肯定是前面某一个丑数乘以23或者5的结果。我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干个结果小于或等于M的。由于我们是按照顺序生成的,小于或者等于M肯定已经在数组中了,我们不需再次考虑;我们还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因为我们希望丑数是按从小到大顺序生成的,其他更大的结果我们以后再说。我们把得到的第一个乘以2后大于M的结果,记为M2。同样我们把已有的每一个丑数乘以35,能得到第一个大于M的结果M3M5。那么下一个丑数应该是M2M3M5三个数的最小者。

  前面我们分析的时候,提到把已有的每个丑数分别都乘以235,事实上是不需要的,因为已有的丑数是按顺序存在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以35而言,存在着同样的T3T5

代码:

  

 1 class Solution {
 2 public:
 3     int GetUglyNumber_Solution(int index){
 4         if(index < 7)
 5               return index;
 6         vector<int> res(index);
 7         res[0]=1;
 8         int t2 =0,t3 = 0, t5 = 0,i;
 9         for(i = 1;i<index;++i)
10         {
11             res[i] = min(res[t2]*2,min(res[t3]*3,res[t5]*5));
12             if(res[i] == res[t2]*2){
13                 ++t2;
14             }
15             if(res[i] == res[t3]*3){
16                 ++t3;
17             }
18             if(res[i] == res[t5]*5){
19                 ++t5;
20             }
21         }
22         return res[index-1];
23     }
24 };

 

posted @ 2017-06-04 21:47  我是畅游海  阅读(103)  评论(0编辑  收藏  举报