1)读取输出文件
| import pandas as pd |
| |
| df = pd.read_csv(path) |
| df.head() |
| df.shape |
| df.columns |
| df.index |
| df.dtypes |
| df.to_csv(path) |
| |
| |
| df = pd.read_txt( |
| file_path, |
| sep='y', |
| header=None, |
| names=['pdate', 'pv', 'uv'] |
| ) |
| |
| |
| df = pd.read_excel(file_path) |
| df.to_excel(path, sheet_name='Your Sheet Name') |
| |
| |
| import pymysql |
| conn = pymysql.connect( |
| host='127.0.0.1', |
| user='root', |
| password='kingshen2', |
| database='learn', |
| charset='utf8' |
| ) |
| result = pd.read_sql('select * from tb_book', con=conn) |
2)数据查询
| import pandas as pd |
| |
| df.loc[2] |
| df.loc['2018-01-03', 'bWendu'] |
| df.loc['2018-01-03', ['bWendu', 'yWendu']] |
| |
| |
| df.loc[['2018-01-01', '2018-01-02', '2018-01-03'], 'bWendu'] |
| df.loc[['2018-01-01', '2018-01-02', '2018-01-03'], ['bWendu', 'yWendu']] |
| |
| |
| df.loc['2018-01-01':'2018-01-03', 'bWendu'] |
| df.loc['2018-01-01', 'bWendu': 'fengxiang'] |
| df.loc['2018-01-01':'2018-01-03', 'bWendu': 'fengxiang'] |
| |
| |
| df.loc[df['yWendu']<0, :] |
| |
| |
| df.loc[(df['bWendu'] <= 0) & (df['yWendu'] <= 0) & (df['tianqi']=='多云'), :] |
| |
| |
| df.loc[lambda df: (df['bWendu']<0) & (df['yWendu'] <0), :] |
| |
| |
| def query_my_weather(df): |
| return df.index.str.startswith('2018-01') & df['aqiLevel']==1 |
| df.loc[query_my_weather, :] |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)