LinkedList源码阅读笔记(1.8)

LinkedList类的注解阅读


/**
 * Doubly-linked list implementation of the {@code List} and {@code Deque}
 * interfaces.  Implements all optional list operations, and permits all
 * elements (including {@code null}).
 *
 * <p>All of the operations perform as could be expected for a doubly-linked
 * list.  Operations that index into the list will traverse the list from
 * the beginning or the end, whichever is closer to the specified index.

 
    双链表实现了List和Deque的接口,实现所有可选列表操作,并允许所有操作元素(包括null)
    对于双向链表,所有操作都可以预期。 索引到列表中的操作将从开头或结尾遍历列表,以较接近指定索引为准。
    

  • Deque接口就是双向队列,是Queue(队列)的一个子接口,双向队列是指该队列两端的元素既能入队(offer)也能出队(poll);
    如果将Deque限制为只能从一端入队和出队,则可实现栈的数据结构。对于栈而言,有入栈(push)和出栈(pop),遵循先进后出原则。
 *
 * Note that this implementation is not synchronized.</strong>
 * If multiple threads access a linked list concurrently, and at least
 * one of the threads modifies the list structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more elements; merely setting the value of
 * an element is not a structural modification.)  This is typically
 * accomplished by synchronizing on some object that naturally
 * encapsulates the list. 
 * 
 * 
 * If no such object exists, the list should be "wrapped" using the
 * {@link Collections#synchronizedList Collections.synchronizedList}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the list:<pre>
 *   List list = Collections.synchronizedList(new LinkedList(...));</pre>
 
    请注意,此实现不同步。 如果多个线程同时访问链表,并且至少有一个线程在结构上修改了列表,则必须在外部进行同步。 (结构修改是添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这通常通过同步自然封装列表的某个对象来完成。
    如果不存在此类对象,则应使用Collections.synchronizedList}方法“包装”该列表。 这最好在创建时完成,以防止对列表的意外不同步访问: List list = Collections.synchronizedList(new LinkedList(...))
 
  • LinkedList线程不同步,可以使用synchronizedList包装此列表,使其线程安全
 * The iterators returned by this class's {@code iterator} and
 * {@code listIterator} methods are <i>fail-fast</i>: if the list is
 * structurally modified at any time after the iterator is created, in
 * any way except through the Iterator's own {@code remove} or
 * {@code add} methods, the iterator will throw a {@link
 * ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than
 * risking arbitrary, non-deterministic behavior at an undetermined
 * time in the future.
 *
    
    这个类的iterator和listIterator方法返回的迭代器是 fail-fast 机制:如果在创建迭代器之后的任何时候对列表进行了结构修改,除了通过Iterator自己的 remove或 add方法之外,迭代器将抛出 ConcurrentModificationException。 因此,在并发修改的情况下,迭代器快速而干净地失败,而不是在未来的未确定时间冒任意,非确定性行为的风险。
  • LinkedList的迭代器也是采用快速失败的策略,在阅读ArrayList源码的时候分析过(参考阅读源码JDK1.8(集合篇)- ArrayList)
 
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw {@code ConcurrentModificationException} on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:  <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>

    注意,迭代器的fail-fast行为是不能保证的.一般来说,保证非同步的同步操作是不太可能的.在最优基础上,Fail-fast迭代器会抛出ConcurrentModificationException.因此,写一个为了自身正确性而依赖于这个异常的程序是不对的.迭代器的fail-fast行为应该只是用来检测bug而已.

  • 我们要主动封装list以便进行同步操作,程序要要避免此异常而不是使用此异常

LinkedList类的定义

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
  • 继承的类
    AbstractSequentialList:抽象类,AbstractList的子类,以最大限度地减少“顺序访问”数据存储实现此接口所需的工作量

  • 实现的接口
    List:不多说了

    Deque:(标记接口)Deque接口就是双向队列,是Queue(队列)的一个子接口
    Cloneable:(标记接口)代表 Object.clone() 方法可以合法地对该类实例进行按字段复制。(没有实现 Cloneable 接口的实例上调用 Object 的 clone 方法,则会导致抛出 CloneNotSupportedException 异常)
    java.io.Serializable(标记接口)

属性的定义

    protected transient int modCount = 0;
    
  • 这是父类AbstractList的一个属性 :用于记录列表结构被修改的次数。每次列表结构被修改都会modCount++
    为什么要记录此数据呢?
    在线程不安全的集合中,正如上面所说:迭代器采用了fail-fast机制。而fail-fast机制触发原理就是比对expectedModCount 和 modCount 是否相等,不相等就报ConcurrentModificationException异常
    此处不理解没关系,后面会讲迭代器方法的源码时,就会明白了
    transient int size = 0;
    
  • transient修饰不可被序列化
    /**
     * Pointer to first node.
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     *            
     * 指向第一个节点的指针
     */
    transient Node<E> first;

  • 存储第一个节点的Node实例,记住一个定律:当first为null时,last必为null,此时list为empty或null;当first.prev 为null时,说明至少有一个元素存在,first.item必不为空;当只存在一个元素时,它即是first又是last
    /**
     * Pointer to last node.
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     * 
     * 指向最后一个节点的指针。
     * 
     */
    transient Node<E> last;

  • 存储最后一个节点的Node实例,记住一个定律:当first为null时,last必为null,此时list为empty或null;当last.next 为null时,说明至少有一个元素存在,last.item必不为空;当只存在一个元素时,它即是first又是last

内部类Node

private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

  • 分成三部分 prev:存储前一位的Node,first的prev为null; item:存储元素;next:存储后一位的Node,last的next为null;

LinkedList构造器

    /**
     * Constructs an empty list.
     * 
     * 构造一个空列表。
     * 
     */
    public LinkedList() {
    }
    
    /**
     * Constructs a list containing the elements of the specified
     * collection, in the order they are returned by the collection's
     * iterator.
     * 
     * 
     * 按照集合的迭代器返回的顺序构造一个包含指定集合元素的列表。
     *
     * @param  c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

  • 相当于一个空LinkedList调用addAll()方法

核心方法

    /**
     * Returns the (non-null) Node at the specified element index.
     * 
     * 返回指定元素索引处的(非null)节点。
     * 
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);
        
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                // 一个个赋值,目的是将第index个赋值
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    
  • LinkedList并不支持随机访问,所以根据index来返回对应元素效率很低。 注意:size >> 1 相当于除以2,一分为二决定从头部开始遍历还是从尾部开始遍历,提高效率

    /**
     * Links e as first element.
     * 
     * 将e作为第一个元素
     * 
     */
    private void linkFirst(E e) {
        final Node<E> f = first;
        // 新建一个元素为e的Node实例,next指针指向first
        final Node<E> newNode = new Node<>(null, e, f);
        // 将元素为e的Node实例作为first
        first = newNode;
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }
    
    
    /**
     * Inserts the specified element at the beginning of this list.
     * 
     * 在list的开头添加指定元素,就是调用上方法
     *
     * @param e the element to add
     */
    public void addFirst(E e) {
        // 直接调用如上方法
        linkFirst(e);
    }
    
  • 简单分步理解:第一步:创建元素为e的Node实例:newNode;第二步:newNode成为first,并且它的next结点指向旧first;第三步:若旧first不存在,newNode也当作last,若旧first存在,则旧first的prev结点要指向newNode;这属于结构修改,所以modCount++

    /**
     * Links e as last element.
     */
    private void linkLast(E e) {
        final Node<E> l = last;
        // 新建一个元素为e的Node实例,pre指针指向first
        final Node<E> newNode = new Node<>(l, e, null);
        // 将元素为e的Node实例作为last
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }
    
    /**
     * Appends the specified element to the end of this list.
     *
     * <p>This method is equivalent to {@link #add}.
     * @param e the element to add
     */
    public void addLast(E e) {
        linkLast(e);
    }
    
    /**
     * Appends the specified element to the end of this list.
     *
     * <p>This method is equivalent to {@link #addLast}.
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }
 
  • 简单理解:(同上,试着自己总结一下),linkLast(E e)被addLast,add方法所使用。
   /**
     * Inserts element e before non-null Node succ.
     * 
     * 在非null节点succ之前插入元素e。     
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }
    
    此方法会被add(int index, E element)使用
    
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));   // 这里的node(index)就使用了一开始说的根据index返回对应的元素的方法
    }

  • 简单分步理解:第一步:创建元素为e的Node实例:newNode,且将prev结点指向succ前一位node;第二步:succ的prev结点指向newNode;第三步:若succ是first,newNode就是first,若succ不是first,则succ的前结点的next要指向newNode;这属于结构修改,所以modCount++
   /**
     * Unlinks non-null first node f.
     * 
     * 删除非空的第一个节点f
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

  • f.item = null;f.next = null;置为空求助于GC回收。first赋值为其next
   /**
     * Unlinks non-null last node l.
     * 
     * 删除非空的最后节点f
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

  • 与unlinkFirst异曲同工
   /**
     * Unlinks non-null node x.
     * 
     * 删除指定的非空的节点x
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }
    
    

  • 逻辑不复杂,其中所有置空操作都是为了让GC回收,以上的方法(除了node(int index))都要modCount++,因为改变了结构

校验方法

    /**
     * Tells if the argument is the index of an existing element.
     */
    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

    /**
     * Tells if the argument is the index of a valid position for an
     * iterator or an add operation.
     */
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }


笔记:

  1. checkElementIndex方法调用isElementIndex方法,是检验此参数index是否是现有元素的索引。用于查,改,删操作的校验比如:get,set,remove方法调用
  2. checkPositionIndex方法调用isPositionIndex方法,是校验此参数index是否是迭代器或添加操作的有效位置的索引。用于add,addAll和迭代器相关方法调用

普通方法

大部分查改的方法都是内部调用的以上介绍的核心方法

    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }
    
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }
    
    public void addFirst(E e) {
        linkFirst(e);
    }

    public void addLast(E e) {
        linkLast(e);
    }
    
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }
    
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }
    
    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

Queue operations. 以下为接口Queue的方法实现

    
    
    
    // 队列查询
    public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }
    
    public E element() {
        return getFirst();
    }
    
    // 出队
    public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }
    
    public E remove() {
        return removeFirst();
    }
    
    // 入队
    public boolean offer(E e) {
        return add(e);
    }

笔记:

  1. getFirst,peek,poll方法都是返回第一个元素,区别在于:frist元素为空时getFirst报异常,peek返回null,poll也返回null;frist元素不为空时,getFirst,peek仅仅返回first,poll返回之后会将first元素删除;getFirst,peek相当于查询,poll相当于取出(出队)。
  2. checkElementIndex(index),checkPositionIndex(index)的区别,上一标题的笔记
  3. set(int index, E element)有返回值,返回的是元素值(oldVal),这点注意。

Deque operations 以下为双向队列Deque的方法实现
这里列出重要的四种6种方法:
当作双向队列时的入队(头或尾),出队(头或尾)四个方法;
当作栈使用时的入栈(push)和出栈(pop)两个方法;


    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }
    
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }
    
    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }
    
    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }
    
    
    /**
     * Pushes an element onto the stack represented by this list.  In other
     * words, inserts the element at the front of this list.
     * 
     * 将元素推送到此列表所表示的堆栈上。 换句话说,将元素插入此列表的前面。
     *
     * <p>This method is equivalent to {@link #addFirst}.
     */
    public void push(E e) {
        addFirst(e);
    }

    /**
     * Pops an element from the stack represented by this list.  In other
     * words, removes and returns the first element of this list.
     * 
     * 弹出此列表所代表的堆栈中的元素。 换句话说,删除并返回此列表的第一个元素。
     *
     * <p>This method is equivalent to {@link #removeFirst()}.
     */
    public E pop() {
        return removeFirst();
    }
    
    

笔记:以上通过方法的分析可以得出 队列,双向队列,栈的区别

  1. 回顾Queue队列的入队(offer)只能从尾部加入,也能出队(poll)只能从头部出去:先进先出
  2. Deque双向队列,支持在首尾两端插入(offerFirst,offerLast)和移除(pollFirst,pollLast)元素;
  3. 栈的特点是先进后出,后进先出;
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }
    
    /**
     * Inserts all of the elements in the specified collection into this
     * list, starting at the specified position.  Shifts the element
     * currently at that position (if any) and any subsequent elements to
     * the right (increases their indices).  The new elements will appear
     * in the list in the order that they are returned by the
     * specified collection's iterator.
     * 
     * 从指定位置开始,将指定集合中的所有元素插入此列表。 
     * 将当前位置的元素(如果有)和任何后续元素向右移动(增加其索引)。 
     * 新元素将按照指定集合的迭代器返回的顺序出现在列表中。
     * 
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        checkPositionIndex(index);

        // 将c转化成数组
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }

        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }


笔记:addAll方法单独列出来,是因为它是有参构造器需要调用的方法;

  1. 将集合c转换成集合a
  2. 遍历a集合,将集合中的元素一一封装成节点newNode,利用pred变量,一一地接起来
  3. 是否是开始节点?是否是最后节点?这样细节问题根据具体条件进行操作

迭代器(iterator&ListIterator)实现

Iterator

    /**
     * @since 1.6
     */
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * Adapter to provide descending iterators via ListItr.previous
     * 
     * 通过ListItr.previous提供降序迭代器
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

  • Iterator返回的是DescendingIterator本质上就是ListItr,区别在于DescendingIterator的hasNext方法相当于ListItr的hasPrevious方法,next方法是ListItr的previous方法

ListIterator

    /**
     * Returns a list-iterator of the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * Obeys the general contract of {@code List.listIterator(int)}.<p>
     * 
     * 从列表中的指定位置开始,返回此列表中元素的列表迭代器(按正确顺序)。
     *
     * The list-iterator is <i>fail-fast</i>: if the list is structurally
     * modified at any time after the Iterator is created, in any way except
     * through the list-iterator's own {@code remove} or {@code add}
     * methods, the list-iterator will throw a
     * {@code ConcurrentModificationException}.  Thus, in the face of
     * concurrent modification, the iterator fails quickly and cleanly, rather
     * than risking arbitrary, non-deterministic behavior at an undetermined
     * time in the future.
     */
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);  // 校验是否是有效位置
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        // 存储上一个返回的节点
        private Node<E> lastReturned;
        // 存储即将返回的节点
        private Node<E> next;
        // 存储即将返回的元素的index
        private int nextIndex;
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

笔记:

  1. ListItr是双向的,有next相关方法,也有previous相关方法
  2. index == size时,next为null,previous()方法返回的就是last节点的元素
  3. remove(),set(E e)方法必须要在next()或previous()之后执行,不然会报IllegalStateException();remove()/set(E e)方法移除/设置的元素就是其前面的next()或previous()返回的这个元素;
  4. add(E e)方法,会将lastReturned = null;
  5. checkForComodification()方法是校验是否存在并发修改的风险,存在则fast-fail

小言

  源码版本为JDK1.8,只是对日常使用的基本操作的源码进行了分析,对于1.8的新特性并没有涉及,等将主要集合类源码分析完后,以后会专门出一篇分析一下1.8中集合的新特性;
  有建议或着问题的,请在文末留言,本人水平有限,有错误或理解偏差,还请各位多多指导和见谅,如若转载,请表明出处;

posted @ 2019-01-11 16:21  王诗文  阅读(245)  评论(0编辑  收藏  举报