Chapter 04—Basic Data Management
1. 创建新的变量
variable<-expression
expression:包含一组大量的操作符和函数。常用的算术操作符如下表:
例1:根据已知变量,创建新变量的三种途径
> mydata<-data.frame(x1=c(2,2,6,4),x2=c(3,4,2,8)) > mydata$sumx<-mydata$x1+mydata$x2 > mydata$meanx<-(mydata$x1+mydata$x2)/2 >
> attach(mydata) > mydata$sumx<-x1+x2 > mydata$meanx<-(x1+x2)/2 > detach(mydata) > mydata$sumx [1] 5 6 8 12 > mydata$meanx [1] 2.5 3.0 4.0 6.0 >
> mydata<-transform(mydata,sumx=x1+x2,meanx=(x1+x2)/2) > mydata$sumx [1] 5 6 8 12 > mydata$meanx [1] 2.5 3.0 4.0 6.0
注意:要明确表明变量x1和x2都是来自数据框mydata的。
2. 记录变量
为了便于记录变量,可以使用R的逻辑操作符,主要的逻辑操作符如下表:
within()函数类似于with()函数,但是允许对数据帧(data frame)进行修改。
例2:within()的使用
>
> manager<-c(1,2,3,4,5) > date<-c("10/24/08","10/28/08","10/1/08","10/12/08","5/1/09") > country<-c("US","US","UK","UK","UK") > gender<-c("M","F","F","M","F") > age<-c(32,45,25,39,99) > q1<-c(5,3,3,3,2) > q2<-c(4,5,5,3,2) > q3<-c(5,2,5,4,1) > q4<-c(5,5,5,NA,2) > q5<-c(5,5,2,NA,1) > leadership<-data.frame(manager,date,country,gender,age,q1,q2,q3,q4,q5,stringAsFactors=FALSE) >
> leadership<-within(leadership,{agecat<-NA + agecat[age>75]<-"elder" + agecat[age>=55&age<=75]<-"middle age" + agecat[age<55]<-"young"})
>
3. 重命名变量
rename()函数:为变量选择名字。
rename(dataframe,c(oldname="newname",oldname="newname",...))
例03:使用fix()函数,对变量重命名。
例04:使用renames()函数,对变量重命名。
> install.packages("reshape") trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/reshape_0.8.4.zip' Content type 'application/zip' length 124890 bytes (121 Kb) opened URL downloaded 121 Kb package ‘reshape’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\seven-wang\AppData\Local\Temp\RtmpIPKmp5\downloaded_packages > library(reshape) 载入需要的程辑包:plyr 载入程辑包:‘reshape’ 下列对象被屏蔽了from ‘package:plyr’: rename, round_any > leadership<-rename(leadership,c(manager="managerID",date="testDate")) > leadership managerID testDate country gender age item1 item2 item3 item4 item5 stringAsFactors agecat 1 1 10/24/08 US M 32 5 4 5 5 5 FALSE young 2 2 10/28/08 US F 45 3 5 2 5 5 FALSE young 3 3 10/1/08 UK F 25 3 5 5 5 2 FALSE young 4 4 10/12/08 UK M 39 3 3 4 NA NA FALSE young 5 5 5/1/09 UK F 99 2 2 1 2 1 FALSE elder
注意:reshape包不在RStudio中,需使用install.packages()来自动安装。
例05:names()的使用:替换名字和显示名字。
> names(leadership) [1] "managerID" "date" "country" "gender" "age" "q1" [7] "q2" "q3" "q4" "q5" "stringAsFactors" "agecat" > names(leadership)[2]<-"testDate" > names(leadership) [1] "managerID" "testDate" "country" "gender" "age" [6] "q1" "q2" "q3" "q4" "q5" [11] "stringAsFactors" "agecat" > names(leadership)[6:10]<-c("item1","item2","item3","item4","item5") > names(leadership) [1] "managerID" "testDate" "country" "gender" "age" [6] "item1" "item2" "item3" "item4" "item5" [11] "stringAsFactors" "agecat" >
4. 变量缺失
(1)is.na():工作于某个数据对象,返回一个同样大小的对象;值缺失位置的元素为TRUE,值未缺失的位置的元素为FALSE。
例06:is.na()函数的使用。
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 10/24/08 US M 32 5 4 5 5 5 FALSE young 2 2 10/28/08 US F 45 3 5 2 5 5 FALSE young 3 3 10/1/08 UK F 25 3 5 5 5 2 FALSE young 4 4 10/12/08 UK M 39 3 3 4 NA NA FALSE young 5 5 5/1/09 UK F 99 2 2 1 2 1 FALSE elder > is.na(leadership[,6:10]) q1 q2 q3 q4 q5 1 FALSE FALSE FALSE FALSE FALSE 2 FALSE FALSE FALSE FALSE FALSE 3 FALSE FALSE FALSE FALSE FALSE 4 FALSE FALSE FALSE TRUE TRUE 5 FALSE FALSE FALSE FALSE FALSE >
(2)na.rm=TRUE选项先除去缺失的值,再使函数计算剩余的存在的值。
例07:na.rm=TRUE的使用例子
> x<-c(1,2,NA,3) > y<-x[1]+x[2]+x[3]+x[4] > z<-sum(x) > x [1] 1 2 NA 3 > y [1] NA > z [1] NA > > x<-c(1,2,NA,3) > y<-sum(x,na.rm=TRUE) > x [1] 1 2 NA 3 > y [1] 6 >
(3)na.omit()函数去除含缺失值的那一行的所有的值。
例08:na.omit()的使用
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 10/24/08 US M 32 5 4 5 5 5 FALSE young 2 2 10/28/08 US F 45 3 5 2 5 5 FALSE young 3 3 10/1/08 UK F 25 3 5 5 5 2 FALSE young 4 4 10/12/08 UK M 39 3 3 4 NA NA FALSE young 5 5 5/1/09 UK F 99 2 2 1 2 1 FALSE elder > > newdata<-na.omit(leadership) > newdata managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 10/24/08 US M 32 5 4 5 5 5 FALSE young 2 2 10/28/08 US F 45 3 5 2 5 5 FALSE young 3 3 10/1/08 UK F 25 3 5 5 5 2 FALSE young 5 5 5/1/09 UK F 99 2 2 1 2 1 FALSE elder >
(4)设定缺失值:
例09:年龄99岁是意味着年龄的缺失。
>
> leadership$age[leadership$age==99]<-NA > leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 10/24/08 US M 32 5 4 5 5 5 FALSE young 2 2 10/28/08 US F 45 3 5 2 5 5 FALSE young 3 3 10/1/08 UK F 25 3 5 5 5 2 FALSE young 4 4 10/12/08 UK M 39 3 3 4 NA NA FALSE young 5 5 5/1/09 UK F NA 2 2 1 2 1 FALSE elder >
5. 时间值
(1)as.Data()函数:进行时间转换。
as.Date(x,"input_format")
x是字符数据,input_format给出读日期时恰当的格式。
例10:as.Date()函数的使用。
> myformat<-"%m/%d/%y" > leadership$date<-as.Date(leadership$date,myformat) > leadership$date [1] "2008-10-24" "2008-10-28" "2008-10-01" "2008-10-12" "2009-05-01" >
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder
(2)Sys.Date()函数:返回今天的日期;
date()函数:返回当前日期和时间。
例11:Sys.Date()函数与date()函数的使用的小例子。
> Sys.Date() [1] "2013-07-31" > date() [1] "Wed Jul 31 15:34:03 2013"
(3)format(x,format="output_format")函数:以指定的格式输入日期,然后选择日期的一部分。
例12:format()函数的使用
> today<-Sys.Date() > format(today,format="%B %d %Y") [1] "七月 31 2013" > format(today,format="%A") [1] "星期三" >
(4)R存储了从1970年1月1日开始的日期,则可以对他们进行算术运算。
例13:计算两个日期间的天数
> startdate<-as.Date("2004-02-13") > enddate<-as.Date("2011-01-22") > days<-enddate-startdate > days Time difference of 2535 days
(5)difftime()函数:计算一个时间间隔,并用秒,分钟,小时,日,周来表示。
例14:difftime()函数的使用
> today<-Sys.Date() > dob<-as.Date("1956-10-12") > difftime(today,dob,units="weeks") Time difference of 2963.714 weeks
(6)as.character()函数:把日期值的表示转换为字符值。
6. 类型转换
例15:
> a<-c(1,2,3) > a [1] 1 2 3 > is.numeric(a) [1] TRUE > is.vector(a) [1] TRUE > > a<-as.character(a) > a [1] "1" "2" "3" > is.numeric(a) [1] FALSE > is.vector(a) [1] TRUE > is.character(a) [1] TRUE >
7. 数据排序
order()函数:缺省时,按升序排列;变量前面加一个负号,则按降序排列。
例16:order()函数使用(1)
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder > newdata<-leadership[order(leadership$age),] > newdata managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder >
例16:order()函数使用(2):按升序排列
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder > attach(leadership) 下列对象被屏蔽了_by_ .GlobalEnv: age, country, date, gender, q1, q2, q3, q4, q5 > newdata<-leadership[order(gender,age),] > newdata managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young > detach(leadership)
例16:order()函数使用(3):按降序排列
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder > attach(leadership) 下列对象被屏蔽了_by_ .GlobalEnv: age, country, date, gender, q1, q2, q3, q4, q5 > newdata<-leadership[order(gender,-age),] > newdata managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young > detach(leadership)
8. 合并数据集(datasets)
(1)添加列
merge()函数:垂直的合并两个数据集(dataset)或数据帧(data frame).
cbind()函数 : 把两个矩阵或数据帧垂直合并在一起,并且不需要指定一个共同的值。
(2)添加行
rbind()函数 : 水平的合并两个数据集(dataset)或数据帧(data frame).
9. 子集的数据集
(1)选择变量
例17:使用数据帧的列标号以及行标号:dataframe[row indices,column indices];
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder > newdata<-leadership[,c(6:10)] > newdata q1 q2 q3 q4 q5 1 5 4 5 5 5 2 3 5 2 5 5 3 3 5 5 5 2 4 3 3 4 NA NA 5 2 2 1 2 1
例17(变1):使用列标号,选择需要的列;行标号缺省,代表选择相应列的所有的行。
> myvars<-c("q1","q2","q3","q4","q5") > myvars [1] "q1" "q2" "q3" "q4" "q5" > newdata<-leadership[myvars] > newdata q1 q2 q3 q4 q5 1 5 4 5 5 5 2 3 5 2 5 5 3 3 5 5 5 2 4 3 3 4 NA NA 5 2 2 1 2 1
例17(变2):用paste()函数创建具有相同的字符的向量。
> myvars<-paste("q",1:5,sep="") > myvars [1] "q1" "q2" "q3" "q4" "q5" > newdata<-leadership[myvars] > newdata q1 q2 q3 q4 q5 1 5 4 5 5 5 2 3 5 2 5 5 3 3 5 5 5 2 4 3 3 4 NA NA 5 2 2 1 2 1
注意:paste()函数的使用,在第5章中还会详讲。
(2)剔除变量
例18:剔除leadership中q3,q4两列的变量。
> leadership managerID date country gender age q1 q2 q3 q4 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 5 5 FALSE young 2 2 2008-10-28 US F 45 3 5 2 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 5 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 4 NA NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 2 1 FALSE elder > myvars<-names(leadership)%in%c("q3","q4") > myvars [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE > newdata<-leadership[!myvars] > newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder
A) 了解leadership中的变量集合
> names(leadership) [1] "managerID" "date" "country" "gender" "age" [6] "q1" "q2" "q3" "q4" "q5" [11] "stringAsFactors" "agecat"
B)names(leadership) %in% c("q3","q4"):返回一组逻辑值组成的向量,即leadership中与q3,q4相匹配的为TRUE,否则,为FALSE。
C)leadership[!myvars]:选择逻辑值为TRUE的列,并忽略掉逻辑值为FALSE的列。
例18(变形1):在leadership中,q3和q4是第8,9个量,则可以如下
> newdata<-leadership[c(-8,-9)] > newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder
例18(变形2):设置q3和q4两列分别为NULL,即未定义的。
> leadership$q3<-leadership$q4<-NULL > leadership managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder
注意:NULL与NA是不一样的。
(3)选择观测量(observations)
例19:按照行选择观测量
> newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder > newdata<-leadership[1:3,] > newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young
例19(变1):
> newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder > attach(leadership) 下列对象被屏蔽了_by_ .GlobalEnv: age, country, date, gender, q1, q2, q5 > newdata<-leadership[which(gender=='M'&age>30),] > newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young > detach(leadership) >
A)gender=='M':会产生向量c(TRUE,FALSE,FASLE,TRUE,FALSE).
B)age>30:会产生向量c(TRUE,TRUE,FALSE,TRUE,TRUE).
C)gender=='M'&age>30:产生向量:c(TRUE,FALSE,FALSE,TRUE,FALSE),也即产生向量c(1,4).
Dleadership[c(1,4)]:从数据帧中选择第一行和第四行的观测量。
例20:使数据分析限制在某个日期段内
> leadership managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder > leadership$date<-as.Date(leadership$date,"%m/%d/%y") > startdate<-as.Date("2009-01-01") > enddate<-as.Date("2009-10-31") > newdate<-leadership[which(leadership$date>=startdate&leadership$date<=enddate),] > newdate managerID date country gender age q1 q2 q5 stringAsFactors agecat 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder
(4)subset()函数
例21:subset(),select()函数的使用
newdata managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young > newdata<-subset(leadership,age>=35|age<24,select=c(q1,q2)) > newdata q1 q2 2 3 5 4 3 3 > newdata<-subset(leadership,gender=='M'&age>25,select=gender:q1) > newdata gender age q1 1 M 32 5 4 M 39 3
(5)随机取样(random sample)
sample()函数:随意找一个例子。
例22:sample()函数的使用
> leadership managerID date country gender age q1 q2 q5 stringAsFactors agecat 1 1 2008-10-24 US M 32 5 4 5 FALSE young 2 2 2008-10-28 US F 45 3 5 5 FALSE young 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 4 4 2008-10-12 UK M 39 3 3 NA FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder > mysample<-leadership[sample(1:nrow(leadership),3,replace=FALSE),] > mysample managerID date country gender age q1 q2 q5 stringAsFactors agecat 3 3 2008-10-01 UK F 25 3 5 2 FALSE young 5 5 2009-05-01 UK F NA 2 2 1 FALSE elder 2 2 2008-10-28 US F 45 3 5 5 FALSE young
10. 使用SQL操作数据帧
例23:
> install.packages("sqldf") also installing the dependencies ‘DBI’, ‘gsubfn’, ‘proto’, ‘chron’, ‘RSQLite’, ‘RSQLite.extfuns’ trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/DBI_0.2-7.zip' Content type 'application/zip' length 270970 bytes (264 Kb) opened URL downloaded 264 Kb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/gsubfn_0.6-5.zip' Content type 'application/zip' length 662152 bytes (646 Kb) opened URL downloaded 646 Kb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/proto_0.3-10.zip' Content type 'application/zip' length 458271 bytes (447 Kb) opened URL downloaded 447 Kb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/chron_2.3-43.zip' Content type 'application/zip' length 105387 bytes (102 Kb) opened URL downloaded 102 Kb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/RSQLite_0.11.4.zip' Content type 'application/zip' length 1145037 bytes (1.1 Mb) opened URL downloaded 1.1 Mb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/RSQLite.extfuns_0.0.1.zip' Content type 'application/zip' length 50877 bytes (49 Kb) opened URL downloaded 49 Kb trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/sqldf_0.4-6.4.zip' Content type 'application/zip' length 70613 bytes (68 Kb) opened URL downloaded 68 Kb package ‘DBI’ successfully unpacked and MD5 sums checked package ‘gsubfn’ successfully unpacked and MD5 sums checked package ‘proto’ successfully unpacked and MD5 sums checked package ‘chron’ successfully unpacked and MD5 sums checked package ‘RSQLite’ successfully unpacked and MD5 sums checked package ‘RSQLite.extfuns’ successfully unpacked and MD5 sums checked package ‘sqldf’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\seven-wang\AppData\Local\Temp\RtmpCY3Fbh\downloaded_packages > library(sqldf) 载入需要的程辑包:DBI 载入需要的程辑包:gsubfn 载入需要的程辑包:proto 载入需要的名字空间:tcltk 载入需要的程辑包:chron 载入需要的程辑包:RSQLite 载入需要的程辑包:RSQLite.extfuns > newdf<-sqldf("select * from mtcars where carb=1 order by mpg",row.names=TRUE) Loading required package: tcltk > newdf mpg cyl disp hp drat wt qsec vs am gear carb Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 > sqldf("select avg(mpg) as avg_mpg,avg(disp) as avg_disp,gear from mtcars where cyl in (4,6) group by gear") avg_mpg avg_disp gear 1 20.33333 201.0333 3 2 24.53333 123.0167 4 3 25.36667 120.1333 5