1206. 设计跳表

不使用任何库函数,设计一个跳表。

跳表是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90],然后增加 80、45 到跳表中,以下图的方式操作:

 

 


Artyom Kalinin [CC BY-SA 3.0], via Wikimedia Commons

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)。

在本题中,你的设计应该要包含这些函数:

bool search(int target) : 返回target是否存在于跳表中。
void add(int num): 插入一个元素到跳表。
bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。
了解更多 : https://en.wikipedia.org/wiki/Skip_list

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

样例:

Skiplist skiplist = new Skiplist();

skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0); // 返回 false
skiplist.add(4);
skiplist.search(1); // 返回 true
skiplist.erase(0); // 返回 false,0 不在跳表中
skiplist.erase(1); // 返回 true
skiplist.search(1); // 返回 false,1 已被擦除
约束条件:

0 <= num, target <= 20000
最多调用 50000 次 search, add, 以及 erase操作。

 

struct Node{
    Node *right,*down;   //向右向下足矣
    int val;
    Node(Node *right,Node *down,int val):right(right),down(down),val(val){}
};

class Skiplist {
private:
    Node *head;

public:
    Skiplist() {
        head=new Node(NULL,NULL,-1);  //初始化头结点
    }
    
    bool search(int target) {
        Node *p=head;
        while(p){
            while(p->right && p->right->val<target){   //寻找目标区间,基本就是这个思路
                p=p->right;
            }
            if(!p->right || target<p->right->val){ //没找到目标值,则继续往下走
                p=p->down;
            }else{         //找到目标值,结束
                return true;
            }
        }
        return false;
    }
    
    void add(int num) {
        vector<Node*> pathList;    //从上至下记录搜索路径
        Node *p=head;
        while(p){
            while(p->right && p->right->val<num){ 
                p=p->right;
            }
            pathList.push_back(p);
            p=p->down;
        }

        bool  insertUp=true;
        Node* downNode=NULL;
        while(insertUp && pathList.size()>0){   //从下至上搜索路径回溯,50%概率
            Node *insert=pathList.back();
            pathList.pop_back();
            insert->right=new Node(insert->right,downNode,num); //add新结点
            downNode=insert->right;    //把新结点赋值为downNode
            insertUp=(rand()&1)==0;   //50%概率
        }
        if(insertUp){  //插入新的头结点,加层
            head=new Node(new Node(NULL,downNode,num),head,-1);
        }
    }
    
    bool erase(int num) {
        Node *p=head;
        bool seen=false;
        while(p){
            while(p->right && p->right->val<num){
                p=p->right;
            }
            if(!p->right ||p->right->val>num){  
                p=p->down;
            }else{    //搜索到目标结点,进行删除操作,结果记录为true,继续往下层搜索,删除一组目标结点
                seen=true;
                p->right=p->right->right;
                p=p->down;
            }
        }
        return seen;
    }
};

 

posted @ 2020-06-02 22:59  大老虎打老虎  阅读(268)  评论(0编辑  收藏  举报