wangchuang2017

15675871637 WeChat wangchuang2022 QQ 2545804152 wangchuang2017@hunnu.edu.cn

得到差异表达基因后怎么做

不管芯片数据还是测序数据,得到的差异表达基因DEGs都是独立的基因,如果直接对这些基因分析叫单基因分析,这种分析会有很多弊端,比如:
  • 因为噪音的存在,结果本身就是不可靠的
  • 因为对DEGs个人取舍条件的不同,也会造成结果不可靠
  • 工作量增大
  • 只关注单个基因而忽视基因之间的相互作用,这就很难揭示具体生物学过程,或不可靠
所以要对这些DEGs进行整合分析,这也是下游分析的关键,也就是要发现这些DEGs所揭示的生物学意义。

1聚类分析

就是把表达模式相似的基因集合到一起,然后以基因集的形式进行合并分析。通俗来说,就是把一整个相对散乱的差异基因根据表达模式相似性,划分为不同的集合,也就是后续对这些集合进行分析。通常的聚类方法有K均值算法,层次聚类,自组织映射等。

2富集分析

富集分析需要有先验知识,那就是对已知的基因有功能注释,然后对目标基因进行功能富集。因为已经有对每个基因的功能注释,所以这种富集结果比较可靠,也有利于揭示生物学问题。
对基因功能注释比较常用的数据库是GO和KEGG,这基本已经成为基因注释和富集分析的标配和必需。富集分析也有两种,一种是Fisher精确检验;一种是GSEA分析,GSEA可以自己定义适合自己的基因集。
注意:GSEA分析RNA-seq数据时,要对基因表达量进行标准化处理。

3共表达网络(WGCNA)

4RNA-seq数据还可以进行可变剪切,基因融合等分析

 
 
作者:Y大宽
链接:https://www.jianshu.com/p/bfbb3ccf355c
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作

posted on   王闯wangchuang2017  阅读(161)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· AI 智能体引爆开源社区「GitHub 热点速览」
历史上的今天:
2021-12-05 第六届中国计算机学会生物信息学会议大会特邀报告CSC2021SDU 12月5号 潘毅:Biological multiple sequence alignment :scoring functions ,algorithms,and evaluation
2021-12-05 第六届中国计算机学会生物信息学会议大会特邀报告CSC2021SDU 12月5号 冯建峰 From Genetics,Brain Imaging to Brain Diseases
2021-12-05 第六届中国计算机学会生物信息学会议大会特邀报告CSC2021SDU 12月5号 田捷:基于人工智能和医疗大数据的影像组学及其临床应用
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示