The long and the short of it: unlocking nanopore long-read RNA sequencing data with short-read tools
Abstract
Application of Oxford Nanopore Technologies’ long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to small library sizes and high sequence error, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore sequencing RNA-seq datasets with the goal of obtaining gene-level and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs (“sequins”) as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 were analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using short-read software and methods that are already in wide use can yield meaningful results.
Competing Interest Statement
MBC and RDP have received support from Oxford Nanopore Technologies (ONT) to present their findings at scientific conferences. However, ONT played no role in study design, execution, analysis or publication.
posted on 2020-09-30 20:50 王闯wangchuang2017 阅读(145) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具