zmq重点
The zmq_msg_send(3) method does not actually send the message to the socket connection(s). It queues the message so that the I/O thread can send it asynchronously. It does not block except in some exception cases. So the message is not necessarily sent when zmq_msg_send(3) returns to your application. If you created a message using zmq_msg_init_data(3) you cannot reuse the data or free it, otherwise the I/O thread will rapidly find itself writing overwritten or unallocated garbage. This is a common mistake for beginners. We'll see a little later how to properly work with messages.
====================
1. A subscriber can connect to more than one publisher, using one 'connect' call each time. Data will then arrive and be interleaved ("fair-queued") so that no single publisher drowns out the others.
2. If a publisher has no connected subscribers, then it will simply drop all messages.
3. If you're using TCP, and a subscriber is slow, messages will queue up on the publisher. We'll look at how to protect publishers against this, using the "high-water mark" later.
4. From ØMQ 3.x, filtering happens at the publisher side, when using a connected protocol (tcp: or ipc:). Using the epgm:// protocol, filtering happens at the subscriber side. In ØMQ/2.x, all filtering happened at the subscriber side.
=======================================================
For most common cases, use tcp, which is a disconnected TCP transport. It is elastic, portable, and fast enough for most cases. We call this 'disconnected' because ØMQ's tcp transport doesn't require that the endpoint exists before you connect to it. Clients and servers can connect and bind at any time, can go and come back, and it remains transparent to applications.
==============================================
ØMQ's ipc transport is disconnected, like tcp. It has one limitation: it does not work on Windows. This may be fixed in future versions of ØMQ.
==================================================
Exclusive pair, which connects two sockets in an exclusive pair. This is a pattern you should use only to connect two threads in a process.
======================================
-
You create and pass around zmq_msg_t objects, not blocks of data.
-
To read a message you use zmq_msg_init(3) to create an empty message, and then you pass that tozmq_msg_recv(3).
-
To write a message from new data, you use zmq_msg_init_size(3) to create a message and at the same time allocate a block of data of some size. You then fill that data using memcpy[3], and pass the message to zmq_msg_send(3).
-
To release (not destroy) a message you call zmq_msg_close(3). This drops a reference, and eventually ØMQ will destroy the message.
-
To access the message content you use zmq_msg_data(3). To know how much data the message contains, use zmq_msg_size(3).
-
Do not use zmq_msg_move(3), zmq_msg_copy(3), or zmq_msg_init_data(3) unless you read the man pages and know precisely why you need these.
Note than when you have passed a message to zmq_msg_send(3), ØMQ will clear the message, i.e. set the size to zero. You cannot send the same message twice, and you cannot access the message data after sending it.
=======================================
In the ØMQ universe, sockets are doorways to fast little background communications engines that manage a whole set of connections automagically for you. You can't see, work with, open, close, or attach state to these connections. Whether you use blocking send or receive, or poll, all you can talk to is the socket, not the connections it manages for you. The connections are private and invisible, and this is the key to ØMQ's scalability.
===============
Do not use or close sockets except in the thread that created them.
=========================
The inter-process transport, ipc, is like tcp except that it is abstracted from the LAN, so you don't need to specify IP addresses or domain names. This makes it better for some purposes, and we use it quite often in the examples in this book. ØMQ's ipc transport is disconnected, like tcp. It has one limitation: it does not work on Windows.
==================
-
DEALER just deals out the messages you send to all connected peers (aka "round-robin"), and deals in (aka "fair queuing") the messages it receives. It is exactly like a PUSH and PULL socket combined.
-
REQ prepends an empty message frame to every message you send, and removes the empty message frame from each message you receive. It then works like DEALER (and in fact is built on DEALER) except it also imposes a strict send / receive cycle.
-
ROUTER prepends an envelope with reply address to each message it receives, before passing it to the application. It also chops off the envelope (the first message frame) from each message it sends, and uses that reply address to decide which peer the message should go to.
-
REP stores all the message frames up to the first empty message frame, when you receive a message and it passes the rest (the data) to your application. When you send a reply, REP prepends the saved envelopes to the message and sends it back using the same semantics as ROUTER (and in fact REP is built on top of ROUTER), but matching REQ, imposes a strict receive / send cycle.
REP requires that the envelopes end with an empty message frame. If you're not using REQ at the other end of the chain then you must add the empty message frame yourself.
So the obvious question about ROUTER is, where does it get the reply addresses from? And the obvious answer is, it uses the socket's identity. As we already learned, if a socket does not set an identity, the ROUTER generates an identity that it can associate with the connection to that socket.
==============================
Note that this behavior is specific to ROUTERs. PUB sockets will also discard messages if there are no subscribers, but all other socket types will queue sent messages until there's a peer to receive them.
=================================
-
You MUST NOT access the same data from multiple threads. Using classic MT techniques like mutexes are an anti-pattern in ØMQ applications. The only exception to this is a ØMQ context object, which is threadsafe.
-
You MUST create a ØMQ context for your process, and pass that to all threads that you want to connect via inproc sockets.
-
You MAY treat threads as separate tasks, with their own context, but these threads cannot communicate over inproc. However they will be easier to break into standalone processes afterwards.
-
You MUST NOT share ØMQ sockets between threads. ØMQ sockets are not threadsafe. Technically it's possible to do this, but it demands semaphores, locks, or mutexes. This will make your application slow and fragile. The only place where it's remotely sane to share sockets between threads are in language bindings that need to do magic like garbage collection on sockets.
- DEALER just deals out the messages you send to all connected peers (aka "round-robin"), and deals in (aka "fair queuing") the messages it receives. It is exactly like a PUSH and PULL socket combined.
- REQ prepends an empty message frame to every message you send, and removes the empty message frame from each message you receive. It then works like DEALER (and in fact is built on DEALER) except it also imposes a strict send / receive cycle.
- ROUTER prepends an envelope with reply address to each message it receives, before passing it to the application. It also chops off the envelope (the first message frame) from each message it sends, and uses that reply address to decide which peer the message should go to.
- REP stores all the message frames up to the first empty message frame, when you receive a message and it passes the rest (the data) to your application. When you send a reply, REP prepends the saved envelopes to the message and sends it back using the same semantics as ROUTER (and in fact REP is built on top of ROUTER), but matching REQ, imposes a strict receive / send cycle.
REP requires that the envelopes end with an empty message frame. If you're not using REQ at the other end of the chain then you must add the empty message frame yourself.
So the obvious question about ROUTER is, where does it get the reply addresses from? And the obvious answer is, it uses the socket's identity. As we already learned, if a socket does not set an identity, the ROUTER generates an identity that it can associate with the connection to that socket.