python--迭代器&生成器

1.列表生成式,迭代器&生成器

列表生成式

孩子,我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 

 1 >>> a
 2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 3 >>> b = []
 4 >>> for i in a:b.append(i+1)
 5 ... 
 6 >>> b
 7 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 8 >>> a = b
 9 >>> a
10 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
11 
12 普通青年版
 1 >>> a
 2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 3 >>> a = map(lambda x:x+1, a)
 4 >>> a
 5 <map object at 0x101d2c630>
 6 >>> for i in a:print(i)
 7 ... 
 8 3
 9 5
10 7
11 9
12 11
13 
14 文艺青年版

其实还有一种写法,如下 

1 >>> a = [i+1 for i in range(10)]
2 >>> a
3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

这就叫做列表生成

 

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1 >>> L = [x * x for x in range(10)]
2 >>> L
3 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
4 >>> g = (x * x for x in range(10))
5 >>> g
6 <generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

 1 >>> next(g)
 2 0
 3 >>> next(g)
 4 1
 5 >>> next(g)
 6 4
 7 >>> next(g)
 8 9
 9 >>> next(g)
10 16
11 >>> next(g)
12 25
13 >>> next(g)
14 36
15 >>> next(g)
16 49
17 >>> next(g)
18 64
19 >>> next(g)
20 81
21 >>> next(g)
22 Traceback (most recent call last):
23   File "<stdin>", line 1, in <module>
24 StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

 1 >>> g = (x * x for x in range(10))
 2 >>> for n in g:
 3 ...     print(n)
 4 ...
 5 0
 6 1
 7 4
 8 9
 9 16
10 25
11 36
12 49
13 64
14 81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1 def fib(max):
2     n, a, b = 0, 0, 1
3     while n < max:
4         print(b)
5         a, b = b, a + b
6         n = n + 1
7     return 'done'

注意,赋值语句:

1 a, b = b, a + b

相当于:

1 t = (b, a + b) # t是一个tuple
2 a = t[0]
3 b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

 1 >>> fib(10)
 2 1
 3 1
 4 2
 5 3
 6 5
 7 8
 8 13
 9 21
10 34
11 55
12 done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

 1 def fib(max):
 2     n,a,b = 0,0,1
 3 
 4     while n < max:
 5         #print(b)
 6         yield  b
 7         a,b = b,a+b
 8 
 9         n += 1
10 
11     return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

1 >>> f = fib(6)
2 >>> f
3 <generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

 1 data = fib(10)
 2 print(data)
 3 
 4 print(data.__next__())
 5 print(data.__next__())
 6 print("干点别的事")
 7 print(data.__next__())
 8 print(data.__next__())
 9 print(data.__next__())
10 print(data.__next__())
11 print(data.__next__())
12 
13 #输出
14 <generator object fib at 0x101be02b0>
15 1
16 干点别的事
17 3
18 8

在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

1 >>> for n in fib(6):
2 ...     print(n)
3 ...
4 1
5 3
6 8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

 1 >>> g = fib(6)
 2 >>> while True:
 3 ...     try:
 4 ...         x = next(g)
 5 ...         print('g:', x)
 6 ...     except StopIteration as e:
 7 ...         print('Generator return value:', e.value)
 8 ...         break
 9 ...
10 g: 1
11 g: 1
12 g: 2
13 g: 3
14 g: 5
15 g: 8
16 Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

还可通过yield实现在单线程的情况下实现并发运算的效果  

 1 #_*_coding:utf-8_*_
 2 __author__ = 'Alex Li'
 3 
 4 import time
 5 def consumer(name):
 6     print("%s 准备吃包子啦!" %name)
 7     while True:
 8        baozi = yield
 9 
10        print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
11 
12 
13 def producer(name):
14     c = consumer('A')
15     c2 = consumer('B')
16     c.__next__()
17     c2.__next__()
18     print("老子开始准备做包子啦!")
19     for i in range(10):
20         time.sleep(1)
21         print("做了2个包子!")
22         c.send(i)
23         c2.send(i)
24 
25 producer("alex")
26 
27 通过生成器实现协程并行运算

 

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

 1 >>> from collections import Iterable
 2 >>> isinstance([], Iterable)
 3 True
 4 >>> isinstance({}, Iterable)
 5 True
 6 >>> isinstance('abc', Iterable)
 7 True
 8 >>> isinstance((x for x in range(10)), Iterable)
 9 True
10 >>> isinstance(100, Iterable)
11 False

 

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

1 >>> from collections import Iterator
2 >>> isinstance((x for x in range(10)), Iterator)
3 True
4 >>> isinstance([], Iterator)
5 False
6 >>> isinstance({}, Iterator)
7 False
8 >>> isinstance('abc', Iterator)
9 False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

1 >>> isinstance(iter([]), Iterator)
2 True
3 >>> isinstance(iter('abc'), Iterator)
4 True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

 

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

1 for x in [1, 2, 3, 4, 5]:
2     pass

实际上完全等价于:

 1 # 首先获得Iterator对象:
 2 it = iter([1, 2, 3, 4, 5])
 3 # 循环:
 4 while True:
 5     try:
 6         # 获得下一个值:
 7         x = next(it)
 8     except StopIteration:
 9         # 遇到StopIteration就退出循环
10         break

 

posted @ 2016-11-07 17:01  wangmo  阅读(221)  评论(0编辑  收藏  举报