[转] 红黑树Java实现文件

红黑树的实现文件(RBTree.java)

  1 /**
  2  * Java 语言: 红黑树
  3  *
  4  * @author skywang
  5  * @date 2013/11/07
  6  */
  7 
  8 public class RBTree<T extends Comparable<T>> {
  9 
 10     private RBTNode<T> mRoot;    // 根结点
 11 
 12     private static final boolean RED   = false;
 13     private static final boolean BLACK = true;
 14 
 15     public class RBTNode<T extends Comparable<T>> {
 16         boolean color;        // 颜色
 17         T key;                // 关键字(键值)
 18         RBTNode<T> left;    // 左孩子
 19         RBTNode<T> right;    // 右孩子
 20         RBTNode<T> parent;    // 父结点
 21 
 22         public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
 23             this.key = key;
 24             this.color = color;
 25             this.parent = parent;
 26             this.left = left;
 27             this.right = right;
 28         }
 29 
 30         public T getKey() {
 31             return key;
 32         }
 33 
 34         public String toString() {
 35             return ""+key+(this.color==RED?"(R)":"B");
 36         }
 37     }
 38 
 39     public RBTree() {
 40         mRoot=null;
 41     }
 42 
 43     private RBTNode<T> parentOf(RBTNode<T> node) {
 44         return node!=null ? node.parent : null;
 45     }
 46     private boolean colorOf(RBTNode<T> node) {
 47         return node!=null ? node.color : BLACK;
 48     }
 49     private boolean isRed(RBTNode<T> node) {
 50         return ((node!=null)&&(node.color==RED)) ? true : false;
 51     }
 52     private boolean isBlack(RBTNode<T> node) {
 53         return !isRed(node);
 54     }
 55     private void setBlack(RBTNode<T> node) {
 56         if (node!=null)
 57             node.color = BLACK;
 58     }
 59     private void setRed(RBTNode<T> node) {
 60         if (node!=null)
 61             node.color = RED;
 62     }
 63     private void setParent(RBTNode<T> node, RBTNode<T> parent) {
 64         if (node!=null)
 65             node.parent = parent;
 66     }
 67     private void setColor(RBTNode<T> node, boolean color) {
 68         if (node!=null)
 69             node.color = color;
 70     }
 71 
 72     /*
 73      * 前序遍历"红黑树"
 74      */
 75     private void preOrder(RBTNode<T> tree) {
 76         if(tree != null) {
 77             System.out.print(tree.key+" ");
 78             preOrder(tree.left);
 79             preOrder(tree.right);
 80         }
 81     }
 82 
 83     public void preOrder() {
 84         preOrder(mRoot);
 85     }
 86 
 87     /*
 88      * 中序遍历"红黑树"
 89      */
 90     private void inOrder(RBTNode<T> tree) {
 91         if(tree != null) {
 92             inOrder(tree.left);
 93             System.out.print(tree.key+" ");
 94             inOrder(tree.right);
 95         }
 96     }
 97 
 98     public void inOrder() {
 99         inOrder(mRoot);
100     }
101 
102 
103     /*
104      * 后序遍历"红黑树"
105      */
106     private void postOrder(RBTNode<T> tree) {
107         if(tree != null)
108         {
109             postOrder(tree.left);
110             postOrder(tree.right);
111             System.out.print(tree.key+" ");
112         }
113     }
114 
115     public void postOrder() {
116         postOrder(mRoot);
117     }
118 
119 
120     /*
121      * (递归实现)查找"红黑树x"中键值为key的节点
122      */
123     private RBTNode<T> search(RBTNode<T> x, T key) {
124         if (x==null)
125             return x;
126 
127         int cmp = key.compareTo(x.key);
128         if (cmp < 0)
129             return search(x.left, key);
130         else if (cmp > 0)
131             return search(x.right, key);
132         else
133             return x;
134     }
135 
136     public RBTNode<T> search(T key) {
137         return search(mRoot, key);
138     }
139 
140     /*
141      * (非递归实现)查找"红黑树x"中键值为key的节点
142      */
143     private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) {
144         while (x!=null) {
145             int cmp = key.compareTo(x.key);
146 
147             if (cmp < 0) 
148                 x = x.left;
149             else if (cmp > 0) 
150                 x = x.right;
151             else
152                 return x;
153         }
154 
155         return x;
156     }
157 
158     public RBTNode<T> iterativeSearch(T key) {
159         return iterativeSearch(mRoot, key);
160     }
161 
162     /* 
163      * 查找最小结点:返回tree为根结点的红黑树的最小结点。
164      */
165     private RBTNode<T> minimum(RBTNode<T> tree) {
166         if (tree == null)
167             return null;
168 
169         while(tree.left != null)
170             tree = tree.left;
171         return tree;
172     }
173 
174     public T minimum() {
175         RBTNode<T> p = minimum(mRoot);
176         if (p != null)
177             return p.key;
178 
179         return null;
180     }
181      
182     /* 
183      * 查找最大结点:返回tree为根结点的红黑树的最大结点。
184      */
185     private RBTNode<T> maximum(RBTNode<T> tree) {
186         if (tree == null)
187             return null;
188 
189         while(tree.right != null)
190             tree = tree.right;
191         return tree;
192     }
193 
194     public T maximum() {
195         RBTNode<T> p = maximum(mRoot);
196         if (p != null)
197             return p.key;
198 
199         return null;
200     }
201 
202     /* 
203      * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
204      */
205     public RBTNode<T> successor(RBTNode<T> x) {
206         // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
207         if (x.right != null)
208             return minimum(x.right);
209 
210         // 如果x没有右孩子。则x有以下两种可能:
211         // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
212         // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
213         RBTNode<T> y = x.parent;
214         while ((y!=null) && (x==y.right)) {
215             x = y;
216             y = y.parent;
217         }
218 
219         return y;
220     }
221      
222     /* 
223      * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
224      */
225     public RBTNode<T> predecessor(RBTNode<T> x) {
226         // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
227         if (x.left != null)
228             return maximum(x.left);
229 
230         // 如果x没有左孩子。则x有以下两种可能:
231         // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
232         // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
233         RBTNode<T> y = x.parent;
234         while ((y!=null) && (x==y.left)) {
235             x = y;
236             y = y.parent;
237         }
238 
239         return y;
240     }
241 
242     /* 
243      * 对红黑树的节点(x)进行左旋转
244      *
245      * 左旋示意图(对节点x进行左旋):
246      *      px                              px
247      *     /                               /
248      *    x                               y                
249      *   /  \      --(左旋)-.           / \                #
250      *  lx   y                          x  ry     
251      *     /   \                       /  \
252      *    ly   ry                     lx  ly  
253      *
254      *
255      */
256     private void leftRotate(RBTNode<T> x) {
257         // 设置x的右孩子为y
258         RBTNode<T> y = x.right;
259 
260         // 将 “y的左孩子” 设为 “x的右孩子”;
261         // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
262         x.right = y.left;
263         if (y.left != null)
264             y.left.parent = x;
265 
266         // 将 “x的父亲” 设为 “y的父亲”
267         y.parent = x.parent;
268 
269         if (x.parent == null) {
270             this.mRoot = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
271         } else {
272             if (x.parent.left == x)
273                 x.parent.left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
274             else
275                 x.parent.right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
276         }
277         
278         // 将 “x” 设为 “y的左孩子”
279         y.left = x;
280         // 将 “x的父节点” 设为 “y”
281         x.parent = y;
282     }
283 
284     /* 
285      * 对红黑树的节点(y)进行右旋转
286      *
287      * 右旋示意图(对节点y进行左旋):
288      *            py                               py
289      *           /                                /
290      *          y                                x                  
291      *         /  \      --(右旋)-.            /  \                     #
292      *        x   ry                           lx   y  
293      *       / \                                   / \                   #
294      *      lx  rx                                rx  ry
295      * 
296      */
297     private void rightRotate(RBTNode<T> y) {
298         // 设置x是当前节点的左孩子。
299         RBTNode<T> x = y.left;
300 
301         // 将 “x的右孩子” 设为 “y的左孩子”;
302         // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
303         y.left = x.right;
304         if (x.right != null)
305             x.right.parent = y;
306 
307         // 将 “y的父亲” 设为 “x的父亲”
308         x.parent = y.parent;
309 
310         if (y.parent == null) {
311             this.mRoot = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
312         } else {
313             if (y == y.parent.right)
314                 y.parent.right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
315             else
316                 y.parent.left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
317         }
318 
319         // 将 “y” 设为 “x的右孩子”
320         x.right = y;
321 
322         // 将 “y的父节点” 设为 “x”
323         y.parent = x;
324     }
325 
326     /*
327      * 红黑树插入修正函数
328      *
329      * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
330      * 目的是将它重新塑造成一颗红黑树。
331      *
332      * 参数说明:
333      *     node 插入的结点        // 对应《算法导论》中的z
334      */
335     private void insertFixUp(RBTNode<T> node) {
336         RBTNode<T> parent, gparent;
337 
338         // 若“父节点存在,并且父节点的颜色是红色”
339         while (((parent = parentOf(node))!=null) && isRed(parent)) {
340             gparent = parentOf(parent);
341 
342             //若“父节点”是“祖父节点的左孩子”
343             if (parent == gparent.left) {
344                 // Case 1条件:叔叔节点是红色
345                 RBTNode<T> uncle = gparent.right;
346                 if ((uncle!=null) && isRed(uncle)) {
347                     setBlack(uncle);
348                     setBlack(parent);
349                     setRed(gparent);
350                     node = gparent;
351                     continue;
352                 }
353 
354                 // Case 2条件:叔叔是黑色,且当前节点是右孩子
355                 if (parent.right == node) {
356                     RBTNode<T> tmp;
357                     leftRotate(parent);
358                     tmp = parent;
359                     parent = node;
360                     node = tmp;
361                 }
362 
363                 // Case 3条件:叔叔是黑色,且当前节点是左孩子。
364                 setBlack(parent);
365                 setRed(gparent);
366                 rightRotate(gparent);
367             } else {    //若“z的父节点”是“z的祖父节点的右孩子”
368                 // Case 1条件:叔叔节点是红色
369                 RBTNode<T> uncle = gparent.left;
370                 if ((uncle!=null) && isRed(uncle)) {
371                     setBlack(uncle);
372                     setBlack(parent);
373                     setRed(gparent);
374                     node = gparent;
375                     continue;
376                 }
377 
378                 // Case 2条件:叔叔是黑色,且当前节点是左孩子
379                 if (parent.left == node) {
380                     RBTNode<T> tmp;
381                     rightRotate(parent);
382                     tmp = parent;
383                     parent = node;
384                     node = tmp;
385                 }
386 
387                 // Case 3条件:叔叔是黑色,且当前节点是右孩子。
388                 setBlack(parent);
389                 setRed(gparent);
390                 leftRotate(gparent);
391             }
392         }
393 
394         // 将根节点设为黑色
395         setBlack(this.mRoot);
396     }
397 
398     /* 
399      * 将结点插入到红黑树中
400      *
401      * 参数说明:
402      *     node 插入的结点        // 对应《算法导论》中的node
403      */
404     private void insert(RBTNode<T> node) {
405         int cmp;
406         RBTNode<T> y = null;
407         RBTNode<T> x = this.mRoot;
408 
409         // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
410         while (x != null) {
411             y = x;
412             cmp = node.key.compareTo(x.key);
413             if (cmp < 0)
414                 x = x.left;
415             else
416                 x = x.right;
417         }
418 
419         node.parent = y;
420         if (y!=null) {
421             cmp = node.key.compareTo(y.key);
422             if (cmp < 0)
423                 y.left = node;
424             else
425                 y.right = node;
426         } else {
427             this.mRoot = node;
428         }
429 
430         // 2. 设置节点的颜色为红色
431         node.color = RED;
432 
433         // 3. 将它重新修正为一颗二叉查找树
434         insertFixUp(node);
435     }
436 
437     /* 
438      * 新建结点(key),并将其插入到红黑树中
439      *
440      * 参数说明:
441      *     key 插入结点的键值
442      */
443     public void insert(T key) {
444         RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null);
445 
446         // 如果新建结点失败,则返回。
447         if (node != null)
448             insert(node);
449     }
450 
451 
452     /*
453      * 红黑树删除修正函数
454      *
455      * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
456      * 目的是将它重新塑造成一颗红黑树。
457      *
458      * 参数说明:
459      *     node 待修正的节点
460      */
461     private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
462         RBTNode<T> other;
463 
464         while ((node==null || isBlack(node)) && (node != this.mRoot)) {
465             if (parent.left == node) {
466                 other = parent.right;
467                 if (isRed(other)) {
468                     // Case 1: x的兄弟w是红色的  
469                     setBlack(other);
470                     setRed(parent);
471                     leftRotate(parent);
472                     other = parent.right;
473                 }
474 
475                 if ((other.left==null || isBlack(other.left)) &&
476                     (other.right==null || isBlack(other.right))) {
477                     // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
478                     setRed(other);
479                     node = parent;
480                     parent = parentOf(node);
481                 } else {
482 
483                     if (other.right==null || isBlack(other.right)) {
484                         // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
485                         setBlack(other.left);
486                         setRed(other);
487                         rightRotate(other);
488                         other = parent.right;
489                     }
490                     // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
491                     setColor(other, colorOf(parent));
492                     setBlack(parent);
493                     setBlack(other.right);
494                     leftRotate(parent);
495                     node = this.mRoot;
496                     break;
497                 }
498             } else {
499 
500                 other = parent.left;
501                 if (isRed(other)) {
502                     // Case 1: x的兄弟w是红色的  
503                     setBlack(other);
504                     setRed(parent);
505                     rightRotate(parent);
506                     other = parent.left;
507                 }
508 
509                 if ((other.left==null || isBlack(other.left)) &&
510                     (other.right==null || isBlack(other.right))) {
511                     // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
512                     setRed(other);
513                     node = parent;
514                     parent = parentOf(node);
515                 } else {
516 
517                     if (other.left==null || isBlack(other.left)) {
518                         // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
519                         setBlack(other.right);
520                         setRed(other);
521                         leftRotate(other);
522                         other = parent.left;
523                     }
524 
525                     // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
526                     setColor(other, colorOf(parent));
527                     setBlack(parent);
528                     setBlack(other.left);
529                     rightRotate(parent);
530                     node = this.mRoot;
531                     break;
532                 }
533             }
534         }
535 
536         if (node!=null)
537             setBlack(node);
538     }
539 
540     /* 
541      * 删除结点(node),并返回被删除的结点
542      *
543      * 参数说明:
544      *     node 删除的结点
545      */
546     private void remove(RBTNode<T> node) {
547         RBTNode<T> child, parent;
548         boolean color;
549 
550         // 被删除节点的"左右孩子都不为空"的情况。
551         if ( (node.left!=null) && (node.right!=null) ) {
552             // 被删节点的后继节点。(称为"取代节点")
553             // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
554             RBTNode<T> replace = node;
555 
556             // 获取后继节点
557             replace = replace.right;
558             while (replace.left != null)
559                 replace = replace.left;
560 
561             // "node节点"不是根节点(只有根节点不存在父节点)
562             if (parentOf(node)!=null) {
563                 if (parentOf(node).left == node)
564                     parentOf(node).left = replace;
565                 else
566                     parentOf(node).right = replace;
567             } else {
568                 // "node节点"是根节点,更新根节点。
569                 this.mRoot = replace;
570             }
571 
572             // child是"取代节点"的右孩子,也是需要"调整的节点"。
573             // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
574             child = replace.right;
575             parent = parentOf(replace);
576             // 保存"取代节点"的颜色
577             color = colorOf(replace);
578 
579             // "被删除节点"是"它的后继节点的父节点"
580             if (parent == node) {
581                 parent = replace;
582             } else {
583                 // child不为空
584                 if (child!=null)
585                     setParent(child, parent);
586                 parent.left = child;
587 
588                 replace.right = node.right;
589                 setParent(node.right, replace);
590             }
591 
592             replace.parent = node.parent;
593             replace.color = node.color;
594             replace.left = node.left;
595             node.left.parent = replace;
596 
597             if (color == BLACK)
598                 removeFixUp(child, parent);
599 
600             node = null;
601             return ;
602         }
603 
604         if (node.left !=null) {
605             child = node.left;
606         } else {
607             child = node.right;
608         }
609 
610         parent = node.parent;
611         // 保存"取代节点"的颜色
612         color = node.color;
613 
614         if (child!=null)
615             child.parent = parent;
616 
617         // "node节点"不是根节点
618         if (parent!=null) {
619             if (parent.left == node)
620                 parent.left = child;
621             else
622                 parent.right = child;
623         } else {
624             this.mRoot = child;
625         }
626 
627         if (color == BLACK)
628             removeFixUp(child, parent);
629         node = null;
630     }
631 
632     /* 
633      * 删除结点(z),并返回被删除的结点
634      *
635      * 参数说明:
636      *     tree 红黑树的根结点
637      *     z 删除的结点
638      */
639     public void remove(T key) {
640         RBTNode<T> node; 
641 
642         if ((node = search(mRoot, key)) != null)
643             remove(node);
644     }
645 
646     /*
647      * 销毁红黑树
648      */
649     private void destroy(RBTNode<T> tree) {
650         if (tree==null)
651             return ;
652 
653         if (tree.left != null)
654             destroy(tree.left);
655         if (tree.right != null)
656             destroy(tree.right);
657 
658         tree=null;
659     }
660 
661     public void clear() {
662         destroy(mRoot);
663         mRoot = null;
664     }
665 
666     /*
667      * 打印"红黑树"
668      *
669      * key        -- 节点的键值 
670      * direction  --  0,表示该节点是根节点;
671      *               -1,表示该节点是它的父结点的左孩子;
672      *                1,表示该节点是它的父结点的右孩子。
673      */
674     private void print(RBTNode<T> tree, T key, int direction) {
675 
676         if(tree != null) {
677 
678             if(direction==0)    // tree是根节点
679                 System.out.printf("%2d(B) is root\n", tree.key);
680             else                // tree是分支节点
681                 System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left");
682 
683             print(tree.left, tree.key, -1);
684             print(tree.right,tree.key,  1);
685         }
686     }
687 
688     public void print() {
689         if (mRoot != null)
690             print(mRoot, mRoot.key, 0);
691     }
692 }
View Code

红黑树的测试文件(RBTreeTest.java)

 

 1 /**
 2  * Java 语言: 二叉查找树
 3  *
 4  * @author skywang
 5  * @date 2013/11/07
 6  */
 7 public class RBTreeTest {
 8 
 9     private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
10     private static final boolean mDebugInsert = false;    // "插入"动作的检测开关(false,关闭;true,打开)
11     private static final boolean mDebugDelete = false;    // "删除"动作的检测开关(false,关闭;true,打开)
12 
13     public static void main(String[] args) {
14         int i, ilen = a.length;
15         RBTree<Integer> tree=new RBTree<Integer>();
16 
17         System.out.printf("== 原始数据: ");
18         for(i=0; i<ilen; i++)
19             System.out.printf("%d ", a[i]);
20         System.out.printf("\n");
21 
22         for(i=0; i<ilen; i++) {
23             tree.insert(a[i]);
24             // 设置mDebugInsert=true,测试"添加函数"
25             if (mDebugInsert) {
26                 System.out.printf("== 添加节点: %d\n", a[i]);
27                 System.out.printf("== 树的详细信息: \n");
28                 tree.print();
29                 System.out.printf("\n");
30             }
31         }
32 
33         System.out.printf("== 前序遍历: ");
34         tree.preOrder();
35 
36         System.out.printf("\n== 中序遍历: ");
37         tree.inOrder();
38 
39         System.out.printf("\n== 后序遍历: ");
40         tree.postOrder();
41         System.out.printf("\n");
42 
43         System.out.printf("== 最小值: %s\n", tree.minimum());
44         System.out.printf("== 最大值: %s\n", tree.maximum());
45         System.out.printf("== 树的详细信息: \n");
46         tree.print();
47         System.out.printf("\n");
48 
49         // 设置mDebugDelete=true,测试"删除函数"
50         if (mDebugDelete) {
51             for(i=0; i<ilen; i++)
52             {
53                 tree.remove(a[i]);
54 
55                 System.out.printf("== 删除节点: %d\n", a[i]);
56                 System.out.printf("== 树的详细信息: \n");
57                 tree.print();
58                 System.out.printf("\n");
59             }
60         }
61 
62         // 销毁二叉树
63         tree.clear();
64     }
65 }
View Code

参考博客:https://www.jianshu.com/p/dabaf89c9211

posted on 2019-10-15 11:11  kenny.wmh  阅读(116)  评论(0编辑  收藏  举报

导航