[转] 红黑树Java实现文件
红黑树的实现文件(RBTree.java)
1 /** 2 * Java 语言: 红黑树 3 * 4 * @author skywang 5 * @date 2013/11/07 6 */ 7 8 public class RBTree<T extends Comparable<T>> { 9 10 private RBTNode<T> mRoot; // 根结点 11 12 private static final boolean RED = false; 13 private static final boolean BLACK = true; 14 15 public class RBTNode<T extends Comparable<T>> { 16 boolean color; // 颜色 17 T key; // 关键字(键值) 18 RBTNode<T> left; // 左孩子 19 RBTNode<T> right; // 右孩子 20 RBTNode<T> parent; // 父结点 21 22 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) { 23 this.key = key; 24 this.color = color; 25 this.parent = parent; 26 this.left = left; 27 this.right = right; 28 } 29 30 public T getKey() { 31 return key; 32 } 33 34 public String toString() { 35 return ""+key+(this.color==RED?"(R)":"B"); 36 } 37 } 38 39 public RBTree() { 40 mRoot=null; 41 } 42 43 private RBTNode<T> parentOf(RBTNode<T> node) { 44 return node!=null ? node.parent : null; 45 } 46 private boolean colorOf(RBTNode<T> node) { 47 return node!=null ? node.color : BLACK; 48 } 49 private boolean isRed(RBTNode<T> node) { 50 return ((node!=null)&&(node.color==RED)) ? true : false; 51 } 52 private boolean isBlack(RBTNode<T> node) { 53 return !isRed(node); 54 } 55 private void setBlack(RBTNode<T> node) { 56 if (node!=null) 57 node.color = BLACK; 58 } 59 private void setRed(RBTNode<T> node) { 60 if (node!=null) 61 node.color = RED; 62 } 63 private void setParent(RBTNode<T> node, RBTNode<T> parent) { 64 if (node!=null) 65 node.parent = parent; 66 } 67 private void setColor(RBTNode<T> node, boolean color) { 68 if (node!=null) 69 node.color = color; 70 } 71 72 /* 73 * 前序遍历"红黑树" 74 */ 75 private void preOrder(RBTNode<T> tree) { 76 if(tree != null) { 77 System.out.print(tree.key+" "); 78 preOrder(tree.left); 79 preOrder(tree.right); 80 } 81 } 82 83 public void preOrder() { 84 preOrder(mRoot); 85 } 86 87 /* 88 * 中序遍历"红黑树" 89 */ 90 private void inOrder(RBTNode<T> tree) { 91 if(tree != null) { 92 inOrder(tree.left); 93 System.out.print(tree.key+" "); 94 inOrder(tree.right); 95 } 96 } 97 98 public void inOrder() { 99 inOrder(mRoot); 100 } 101 102 103 /* 104 * 后序遍历"红黑树" 105 */ 106 private void postOrder(RBTNode<T> tree) { 107 if(tree != null) 108 { 109 postOrder(tree.left); 110 postOrder(tree.right); 111 System.out.print(tree.key+" "); 112 } 113 } 114 115 public void postOrder() { 116 postOrder(mRoot); 117 } 118 119 120 /* 121 * (递归实现)查找"红黑树x"中键值为key的节点 122 */ 123 private RBTNode<T> search(RBTNode<T> x, T key) { 124 if (x==null) 125 return x; 126 127 int cmp = key.compareTo(x.key); 128 if (cmp < 0) 129 return search(x.left, key); 130 else if (cmp > 0) 131 return search(x.right, key); 132 else 133 return x; 134 } 135 136 public RBTNode<T> search(T key) { 137 return search(mRoot, key); 138 } 139 140 /* 141 * (非递归实现)查找"红黑树x"中键值为key的节点 142 */ 143 private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) { 144 while (x!=null) { 145 int cmp = key.compareTo(x.key); 146 147 if (cmp < 0) 148 x = x.left; 149 else if (cmp > 0) 150 x = x.right; 151 else 152 return x; 153 } 154 155 return x; 156 } 157 158 public RBTNode<T> iterativeSearch(T key) { 159 return iterativeSearch(mRoot, key); 160 } 161 162 /* 163 * 查找最小结点:返回tree为根结点的红黑树的最小结点。 164 */ 165 private RBTNode<T> minimum(RBTNode<T> tree) { 166 if (tree == null) 167 return null; 168 169 while(tree.left != null) 170 tree = tree.left; 171 return tree; 172 } 173 174 public T minimum() { 175 RBTNode<T> p = minimum(mRoot); 176 if (p != null) 177 return p.key; 178 179 return null; 180 } 181 182 /* 183 * 查找最大结点:返回tree为根结点的红黑树的最大结点。 184 */ 185 private RBTNode<T> maximum(RBTNode<T> tree) { 186 if (tree == null) 187 return null; 188 189 while(tree.right != null) 190 tree = tree.right; 191 return tree; 192 } 193 194 public T maximum() { 195 RBTNode<T> p = maximum(mRoot); 196 if (p != null) 197 return p.key; 198 199 return null; 200 } 201 202 /* 203 * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。 204 */ 205 public RBTNode<T> successor(RBTNode<T> x) { 206 // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。 207 if (x.right != null) 208 return minimum(x.right); 209 210 // 如果x没有右孩子。则x有以下两种可能: 211 // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。 212 // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。 213 RBTNode<T> y = x.parent; 214 while ((y!=null) && (x==y.right)) { 215 x = y; 216 y = y.parent; 217 } 218 219 return y; 220 } 221 222 /* 223 * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。 224 */ 225 public RBTNode<T> predecessor(RBTNode<T> x) { 226 // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。 227 if (x.left != null) 228 return maximum(x.left); 229 230 // 如果x没有左孩子。则x有以下两种可能: 231 // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。 232 // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。 233 RBTNode<T> y = x.parent; 234 while ((y!=null) && (x==y.left)) { 235 x = y; 236 y = y.parent; 237 } 238 239 return y; 240 } 241 242 /* 243 * 对红黑树的节点(x)进行左旋转 244 * 245 * 左旋示意图(对节点x进行左旋): 246 * px px 247 * / / 248 * x y 249 * / \ --(左旋)-. / \ # 250 * lx y x ry 251 * / \ / \ 252 * ly ry lx ly 253 * 254 * 255 */ 256 private void leftRotate(RBTNode<T> x) { 257 // 设置x的右孩子为y 258 RBTNode<T> y = x.right; 259 260 // 将 “y的左孩子” 设为 “x的右孩子”; 261 // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲” 262 x.right = y.left; 263 if (y.left != null) 264 y.left.parent = x; 265 266 // 将 “x的父亲” 设为 “y的父亲” 267 y.parent = x.parent; 268 269 if (x.parent == null) { 270 this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点 271 } else { 272 if (x.parent.left == x) 273 x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” 274 else 275 x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” 276 } 277 278 // 将 “x” 设为 “y的左孩子” 279 y.left = x; 280 // 将 “x的父节点” 设为 “y” 281 x.parent = y; 282 } 283 284 /* 285 * 对红黑树的节点(y)进行右旋转 286 * 287 * 右旋示意图(对节点y进行左旋): 288 * py py 289 * / / 290 * y x 291 * / \ --(右旋)-. / \ # 292 * x ry lx y 293 * / \ / \ # 294 * lx rx rx ry 295 * 296 */ 297 private void rightRotate(RBTNode<T> y) { 298 // 设置x是当前节点的左孩子。 299 RBTNode<T> x = y.left; 300 301 // 将 “x的右孩子” 设为 “y的左孩子”; 302 // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲” 303 y.left = x.right; 304 if (x.right != null) 305 x.right.parent = y; 306 307 // 将 “y的父亲” 设为 “x的父亲” 308 x.parent = y.parent; 309 310 if (y.parent == null) { 311 this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点 312 } else { 313 if (y == y.parent.right) 314 y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子” 315 else 316 y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子” 317 } 318 319 // 将 “y” 设为 “x的右孩子” 320 x.right = y; 321 322 // 将 “y的父节点” 设为 “x” 323 y.parent = x; 324 } 325 326 /* 327 * 红黑树插入修正函数 328 * 329 * 在向红黑树中插入节点之后(失去平衡),再调用该函数; 330 * 目的是将它重新塑造成一颗红黑树。 331 * 332 * 参数说明: 333 * node 插入的结点 // 对应《算法导论》中的z 334 */ 335 private void insertFixUp(RBTNode<T> node) { 336 RBTNode<T> parent, gparent; 337 338 // 若“父节点存在,并且父节点的颜色是红色” 339 while (((parent = parentOf(node))!=null) && isRed(parent)) { 340 gparent = parentOf(parent); 341 342 //若“父节点”是“祖父节点的左孩子” 343 if (parent == gparent.left) { 344 // Case 1条件:叔叔节点是红色 345 RBTNode<T> uncle = gparent.right; 346 if ((uncle!=null) && isRed(uncle)) { 347 setBlack(uncle); 348 setBlack(parent); 349 setRed(gparent); 350 node = gparent; 351 continue; 352 } 353 354 // Case 2条件:叔叔是黑色,且当前节点是右孩子 355 if (parent.right == node) { 356 RBTNode<T> tmp; 357 leftRotate(parent); 358 tmp = parent; 359 parent = node; 360 node = tmp; 361 } 362 363 // Case 3条件:叔叔是黑色,且当前节点是左孩子。 364 setBlack(parent); 365 setRed(gparent); 366 rightRotate(gparent); 367 } else { //若“z的父节点”是“z的祖父节点的右孩子” 368 // Case 1条件:叔叔节点是红色 369 RBTNode<T> uncle = gparent.left; 370 if ((uncle!=null) && isRed(uncle)) { 371 setBlack(uncle); 372 setBlack(parent); 373 setRed(gparent); 374 node = gparent; 375 continue; 376 } 377 378 // Case 2条件:叔叔是黑色,且当前节点是左孩子 379 if (parent.left == node) { 380 RBTNode<T> tmp; 381 rightRotate(parent); 382 tmp = parent; 383 parent = node; 384 node = tmp; 385 } 386 387 // Case 3条件:叔叔是黑色,且当前节点是右孩子。 388 setBlack(parent); 389 setRed(gparent); 390 leftRotate(gparent); 391 } 392 } 393 394 // 将根节点设为黑色 395 setBlack(this.mRoot); 396 } 397 398 /* 399 * 将结点插入到红黑树中 400 * 401 * 参数说明: 402 * node 插入的结点 // 对应《算法导论》中的node 403 */ 404 private void insert(RBTNode<T> node) { 405 int cmp; 406 RBTNode<T> y = null; 407 RBTNode<T> x = this.mRoot; 408 409 // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。 410 while (x != null) { 411 y = x; 412 cmp = node.key.compareTo(x.key); 413 if (cmp < 0) 414 x = x.left; 415 else 416 x = x.right; 417 } 418 419 node.parent = y; 420 if (y!=null) { 421 cmp = node.key.compareTo(y.key); 422 if (cmp < 0) 423 y.left = node; 424 else 425 y.right = node; 426 } else { 427 this.mRoot = node; 428 } 429 430 // 2. 设置节点的颜色为红色 431 node.color = RED; 432 433 // 3. 将它重新修正为一颗二叉查找树 434 insertFixUp(node); 435 } 436 437 /* 438 * 新建结点(key),并将其插入到红黑树中 439 * 440 * 参数说明: 441 * key 插入结点的键值 442 */ 443 public void insert(T key) { 444 RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null); 445 446 // 如果新建结点失败,则返回。 447 if (node != null) 448 insert(node); 449 } 450 451 452 /* 453 * 红黑树删除修正函数 454 * 455 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数; 456 * 目的是将它重新塑造成一颗红黑树。 457 * 458 * 参数说明: 459 * node 待修正的节点 460 */ 461 private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) { 462 RBTNode<T> other; 463 464 while ((node==null || isBlack(node)) && (node != this.mRoot)) { 465 if (parent.left == node) { 466 other = parent.right; 467 if (isRed(other)) { 468 // Case 1: x的兄弟w是红色的 469 setBlack(other); 470 setRed(parent); 471 leftRotate(parent); 472 other = parent.right; 473 } 474 475 if ((other.left==null || isBlack(other.left)) && 476 (other.right==null || isBlack(other.right))) { 477 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 478 setRed(other); 479 node = parent; 480 parent = parentOf(node); 481 } else { 482 483 if (other.right==null || isBlack(other.right)) { 484 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 485 setBlack(other.left); 486 setRed(other); 487 rightRotate(other); 488 other = parent.right; 489 } 490 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 491 setColor(other, colorOf(parent)); 492 setBlack(parent); 493 setBlack(other.right); 494 leftRotate(parent); 495 node = this.mRoot; 496 break; 497 } 498 } else { 499 500 other = parent.left; 501 if (isRed(other)) { 502 // Case 1: x的兄弟w是红色的 503 setBlack(other); 504 setRed(parent); 505 rightRotate(parent); 506 other = parent.left; 507 } 508 509 if ((other.left==null || isBlack(other.left)) && 510 (other.right==null || isBlack(other.right))) { 511 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 512 setRed(other); 513 node = parent; 514 parent = parentOf(node); 515 } else { 516 517 if (other.left==null || isBlack(other.left)) { 518 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 519 setBlack(other.right); 520 setRed(other); 521 leftRotate(other); 522 other = parent.left; 523 } 524 525 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 526 setColor(other, colorOf(parent)); 527 setBlack(parent); 528 setBlack(other.left); 529 rightRotate(parent); 530 node = this.mRoot; 531 break; 532 } 533 } 534 } 535 536 if (node!=null) 537 setBlack(node); 538 } 539 540 /* 541 * 删除结点(node),并返回被删除的结点 542 * 543 * 参数说明: 544 * node 删除的结点 545 */ 546 private void remove(RBTNode<T> node) { 547 RBTNode<T> child, parent; 548 boolean color; 549 550 // 被删除节点的"左右孩子都不为空"的情况。 551 if ( (node.left!=null) && (node.right!=null) ) { 552 // 被删节点的后继节点。(称为"取代节点") 553 // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。 554 RBTNode<T> replace = node; 555 556 // 获取后继节点 557 replace = replace.right; 558 while (replace.left != null) 559 replace = replace.left; 560 561 // "node节点"不是根节点(只有根节点不存在父节点) 562 if (parentOf(node)!=null) { 563 if (parentOf(node).left == node) 564 parentOf(node).left = replace; 565 else 566 parentOf(node).right = replace; 567 } else { 568 // "node节点"是根节点,更新根节点。 569 this.mRoot = replace; 570 } 571 572 // child是"取代节点"的右孩子,也是需要"调整的节点"。 573 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。 574 child = replace.right; 575 parent = parentOf(replace); 576 // 保存"取代节点"的颜色 577 color = colorOf(replace); 578 579 // "被删除节点"是"它的后继节点的父节点" 580 if (parent == node) { 581 parent = replace; 582 } else { 583 // child不为空 584 if (child!=null) 585 setParent(child, parent); 586 parent.left = child; 587 588 replace.right = node.right; 589 setParent(node.right, replace); 590 } 591 592 replace.parent = node.parent; 593 replace.color = node.color; 594 replace.left = node.left; 595 node.left.parent = replace; 596 597 if (color == BLACK) 598 removeFixUp(child, parent); 599 600 node = null; 601 return ; 602 } 603 604 if (node.left !=null) { 605 child = node.left; 606 } else { 607 child = node.right; 608 } 609 610 parent = node.parent; 611 // 保存"取代节点"的颜色 612 color = node.color; 613 614 if (child!=null) 615 child.parent = parent; 616 617 // "node节点"不是根节点 618 if (parent!=null) { 619 if (parent.left == node) 620 parent.left = child; 621 else 622 parent.right = child; 623 } else { 624 this.mRoot = child; 625 } 626 627 if (color == BLACK) 628 removeFixUp(child, parent); 629 node = null; 630 } 631 632 /* 633 * 删除结点(z),并返回被删除的结点 634 * 635 * 参数说明: 636 * tree 红黑树的根结点 637 * z 删除的结点 638 */ 639 public void remove(T key) { 640 RBTNode<T> node; 641 642 if ((node = search(mRoot, key)) != null) 643 remove(node); 644 } 645 646 /* 647 * 销毁红黑树 648 */ 649 private void destroy(RBTNode<T> tree) { 650 if (tree==null) 651 return ; 652 653 if (tree.left != null) 654 destroy(tree.left); 655 if (tree.right != null) 656 destroy(tree.right); 657 658 tree=null; 659 } 660 661 public void clear() { 662 destroy(mRoot); 663 mRoot = null; 664 } 665 666 /* 667 * 打印"红黑树" 668 * 669 * key -- 节点的键值 670 * direction -- 0,表示该节点是根节点; 671 * -1,表示该节点是它的父结点的左孩子; 672 * 1,表示该节点是它的父结点的右孩子。 673 */ 674 private void print(RBTNode<T> tree, T key, int direction) { 675 676 if(tree != null) { 677 678 if(direction==0) // tree是根节点 679 System.out.printf("%2d(B) is root\n", tree.key); 680 else // tree是分支节点 681 System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left"); 682 683 print(tree.left, tree.key, -1); 684 print(tree.right,tree.key, 1); 685 } 686 } 687 688 public void print() { 689 if (mRoot != null) 690 print(mRoot, mRoot.key, 0); 691 } 692 }
红黑树的测试文件(RBTreeTest.java)
1 /** 2 * Java 语言: 二叉查找树 3 * 4 * @author skywang 5 * @date 2013/11/07 6 */ 7 public class RBTreeTest { 8 9 private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80}; 10 private static final boolean mDebugInsert = false; // "插入"动作的检测开关(false,关闭;true,打开) 11 private static final boolean mDebugDelete = false; // "删除"动作的检测开关(false,关闭;true,打开) 12 13 public static void main(String[] args) { 14 int i, ilen = a.length; 15 RBTree<Integer> tree=new RBTree<Integer>(); 16 17 System.out.printf("== 原始数据: "); 18 for(i=0; i<ilen; i++) 19 System.out.printf("%d ", a[i]); 20 System.out.printf("\n"); 21 22 for(i=0; i<ilen; i++) { 23 tree.insert(a[i]); 24 // 设置mDebugInsert=true,测试"添加函数" 25 if (mDebugInsert) { 26 System.out.printf("== 添加节点: %d\n", a[i]); 27 System.out.printf("== 树的详细信息: \n"); 28 tree.print(); 29 System.out.printf("\n"); 30 } 31 } 32 33 System.out.printf("== 前序遍历: "); 34 tree.preOrder(); 35 36 System.out.printf("\n== 中序遍历: "); 37 tree.inOrder(); 38 39 System.out.printf("\n== 后序遍历: "); 40 tree.postOrder(); 41 System.out.printf("\n"); 42 43 System.out.printf("== 最小值: %s\n", tree.minimum()); 44 System.out.printf("== 最大值: %s\n", tree.maximum()); 45 System.out.printf("== 树的详细信息: \n"); 46 tree.print(); 47 System.out.printf("\n"); 48 49 // 设置mDebugDelete=true,测试"删除函数" 50 if (mDebugDelete) { 51 for(i=0; i<ilen; i++) 52 { 53 tree.remove(a[i]); 54 55 System.out.printf("== 删除节点: %d\n", a[i]); 56 System.out.printf("== 树的详细信息: \n"); 57 tree.print(); 58 System.out.printf("\n"); 59 } 60 } 61 62 // 销毁二叉树 63 tree.clear(); 64 } 65 }