Linux网络设备驱动之DM9000网卡设备驱动实例(九)

一、DM9000 网卡硬件描述

  DM9000是开发板采用的网络芯片,是一个高度集成且功耗很低的告诉网络控制器,可以和 CPU 直连,支持 10/100MB 以太网连接,芯片内部自带 4KB 双字节的 SRAM (3KB用来发送, 13KB用来接收)。针对不同的处理器,接口支持 8 位、16 位和 32位。DM9000一般直接挂在外面的内存总线上。

二、DM9000网卡驱动设计分析

  DM9000网卡驱动位于内核源代码的 drivers/net/ethernet/davicom/dm9000.c 中,它基于平台驱动架构,其核心工作是实现了前文所述 net_device 结构体中的 hard_start_xmit()、open()、stop()、set_multicast_list()、do_ioctl()、tx_timeout()等成员函数,并借助中断辅助进行网络数据包的收发,另外它也实现了 ethtool_ops 中的成员函数。

   1 #include <linux/module.h>
   2 #include <linux/ioport.h>
   3 #include <linux/netdevice.h>
   4 #include <linux/etherdevice.h>
   5 #include <linux/interrupt.h>
   6 #include <linux/skbuff.h>
   7 #include <linux/spinlock.h>
   8 #include <linux/crc32.h>
   9 #include <linux/mii.h>
  10 #include <linux/of.h>
  11 #include <linux/of_net.h>
  12 #include <linux/ethtool.h>
  13 #include <linux/dm9000.h>
  14 #include <linux/delay.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/irq.h>
  17 #include <linux/slab.h>
  18 #include <linux/regulator/consumer.h>
  19 #include <linux/gpio.h>
  20 #include <linux/of_gpio.h>
  21 
  22 #include <asm/delay.h>
  23 #include <asm/irq.h>
  24 #include <asm/io.h>
  25 
  26 #include "dm9000.h"
  27 
  28 /* Board/System/Debug information/definition ---------------- */
  29 
  30 #define DM9000_PHY        0x40    /* PHY address 0x01 */
  31 
  32 #define CARDNAME    "dm9000"
  33 #define DRV_VERSION    "1.31"
  34 
  35 /*
  36  * Transmit timeout, default 5 seconds.
  37  */
  38 static int watchdog = 5000;
  39 module_param(watchdog, int, 0400);
  40 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  41 
  42 /*
  43  * Debug messages level
  44  */
  45 static int debug;
  46 module_param(debug, int, 0644);
  47 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  48 
  49 /* DM9000 register address locking.
  50  *
  51  * The DM9000 uses an address register to control where data written
  52  * to the data register goes. This means that the address register
  53  * must be preserved over interrupts or similar calls.
  54  *
  55  * During interrupt and other critical calls, a spinlock is used to
  56  * protect the system, but the calls themselves save the address
  57  * in the address register in case they are interrupting another
  58  * access to the device.
  59  *
  60  * For general accesses a lock is provided so that calls which are
  61  * allowed to sleep are serialised so that the address register does
  62  * not need to be saved. This lock also serves to serialise access
  63  * to the EEPROM and PHY access registers which are shared between
  64  * these two devices.
  65  */
  66 
  67 /* The driver supports the original DM9000E, and now the two newer
  68  * devices, DM9000A and DM9000B.
  69  */
  70 
  71 enum dm9000_type {
  72     TYPE_DM9000E,    /* original DM9000 */
  73     TYPE_DM9000A,
  74     TYPE_DM9000B
  75 };
  76 
  77 /* Structure/enum declaration ------------------------------- */
  78 struct board_info {
  79 
  80     void __iomem    *io_addr;    /* Register I/O base address */
  81     void __iomem    *io_data;    /* Data I/O address */
  82     u16         irq;        /* IRQ */
  83 
  84     u16        tx_pkt_cnt;
  85     u16        queue_pkt_len;
  86     u16        queue_start_addr;
  87     u16        queue_ip_summed;
  88     u16        dbug_cnt;
  89     u8        io_mode;        /* 0:word, 2:byte */
  90     u8        phy_addr;
  91     u8        imr_all;
  92 
  93     unsigned int    flags;
  94     unsigned int    in_timeout:1;
  95     unsigned int    in_suspend:1;
  96     unsigned int    wake_supported:1;
  97 
  98     enum dm9000_type type;
  99 
 100     void (*inblk)(void __iomem *port, void *data, int length);
 101     void (*outblk)(void __iomem *port, void *data, int length);
 102     void (*dumpblk)(void __iomem *port, int length);
 103 
 104     struct device    *dev;         /* parent device */
 105 
 106     struct resource    *addr_res;   /* resources found */
 107     struct resource *data_res;
 108     struct resource    *addr_req;   /* resources requested */
 109     struct resource *data_req;
 110     struct resource *irq_res;
 111 
 112     int         irq_wake;
 113 
 114     struct mutex     addr_lock;    /* phy and eeprom access lock */
 115 
 116     struct delayed_work phy_poll;
 117     struct net_device  *ndev;
 118 
 119     spinlock_t    lock;
 120 
 121     struct mii_if_info mii;
 122     u32        msg_enable;
 123     u32        wake_state;
 124 
 125     int        ip_summed;
 126 };
 127 
 128 /* debug code */
 129 
 130 #define dm9000_dbg(db, lev, msg...) do {        \
 131     if ((lev) < debug) {                \
 132         dev_dbg(db->dev, msg);            \
 133     }                        \
 134 } while (0)
 135 
 136 static inline struct board_info *to_dm9000_board(struct net_device *dev)
 137 {
 138     return netdev_priv(dev);
 139 }
 140 
 141 /* DM9000 network board routine ---------------------------- */
 142 
 143 /*
 144  *   Read a byte from I/O port
 145  */
 146 static u8
 147 ior(struct board_info *db, int reg)
 148 {
 149     writeb(reg, db->io_addr);
 150     return readb(db->io_data);
 151 }
 152 
 153 /*
 154  *   Write a byte to I/O port
 155  */
 156 
 157 static void
 158 iow(struct board_info *db, int reg, int value)
 159 {
 160     writeb(reg, db->io_addr);
 161     writeb(value, db->io_data);
 162 }
 163 
 164 static void
 165 dm9000_reset(struct board_info *db)
 166 {
 167     dev_dbg(db->dev, "resetting device\n");
 168 
 169     /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 170      * The essential point is that we have to do a double reset, and the
 171      * instruction is to set LBK into MAC internal loopback mode.
 172      */
 173     iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 174     udelay(100); /* Application note says at least 20 us */
 175     if (ior(db, DM9000_NCR) & 1)
 176         dev_err(db->dev, "dm9000 did not respond to first reset\n");
 177 
 178     iow(db, DM9000_NCR, 0);
 179     iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 180     udelay(100);
 181     if (ior(db, DM9000_NCR) & 1)
 182         dev_err(db->dev, "dm9000 did not respond to second reset\n");
 183 }
 184 
 185 /* routines for sending block to chip */
 186 
 187 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 188 {
 189     iowrite8_rep(reg, data, count);
 190 }
 191 
 192 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 193 {
 194     iowrite16_rep(reg, data, (count+1) >> 1);
 195 }
 196 
 197 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 198 {
 199     iowrite32_rep(reg, data, (count+3) >> 2);
 200 }
 201 
 202 /* input block from chip to memory */
 203 
 204 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 205 {
 206     ioread8_rep(reg, data, count);
 207 }
 208 
 209 
 210 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 211 {
 212     ioread16_rep(reg, data, (count+1) >> 1);
 213 }
 214 
 215 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 216 {
 217     ioread32_rep(reg, data, (count+3) >> 2);
 218 }
 219 
 220 /* dump block from chip to null */
 221 
 222 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 223 {
 224     int i;
 225     int tmp;
 226 
 227     for (i = 0; i < count; i++)
 228         tmp = readb(reg);
 229 }
 230 
 231 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 232 {
 233     int i;
 234     int tmp;
 235 
 236     count = (count + 1) >> 1;
 237 
 238     for (i = 0; i < count; i++)
 239         tmp = readw(reg);
 240 }
 241 
 242 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 243 {
 244     int i;
 245     int tmp;
 246 
 247     count = (count + 3) >> 2;
 248 
 249     for (i = 0; i < count; i++)
 250         tmp = readl(reg);
 251 }
 252 
 253 /*
 254  * Sleep, either by using msleep() or if we are suspending, then
 255  * use mdelay() to sleep.
 256  */
 257 static void dm9000_msleep(struct board_info *db, unsigned int ms)
 258 {
 259     if (db->in_suspend || db->in_timeout)
 260         mdelay(ms);
 261     else
 262         msleep(ms);
 263 }
 264 
 265 /* Read a word from phyxcer */
 266 static int
 267 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 268 {
 269     struct board_info *db = netdev_priv(dev);
 270     unsigned long flags;
 271     unsigned int reg_save;
 272     int ret;
 273 
 274     mutex_lock(&db->addr_lock);
 275 
 276     spin_lock_irqsave(&db->lock, flags);
 277 
 278     /* Save previous register address */
 279     reg_save = readb(db->io_addr);
 280 
 281     /* Fill the phyxcer register into REG_0C */
 282     iow(db, DM9000_EPAR, DM9000_PHY | reg);
 283 
 284     /* Issue phyxcer read command */
 285     iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 286 
 287     writeb(reg_save, db->io_addr);
 288     spin_unlock_irqrestore(&db->lock, flags);
 289 
 290     dm9000_msleep(db, 1);        /* Wait read complete */
 291 
 292     spin_lock_irqsave(&db->lock, flags);
 293     reg_save = readb(db->io_addr);
 294 
 295     iow(db, DM9000_EPCR, 0x0);    /* Clear phyxcer read command */
 296 
 297     /* The read data keeps on REG_0D & REG_0E */
 298     ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 299 
 300     /* restore the previous address */
 301     writeb(reg_save, db->io_addr);
 302     spin_unlock_irqrestore(&db->lock, flags);
 303 
 304     mutex_unlock(&db->addr_lock);
 305 
 306     dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 307     return ret;
 308 }
 309 
 310 /* Write a word to phyxcer */
 311 static void
 312 dm9000_phy_write(struct net_device *dev,
 313          int phyaddr_unused, int reg, int value)
 314 {
 315     struct board_info *db = netdev_priv(dev);
 316     unsigned long flags;
 317     unsigned long reg_save;
 318 
 319     dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 320     if (!db->in_timeout)
 321         mutex_lock(&db->addr_lock);
 322 
 323     spin_lock_irqsave(&db->lock, flags);
 324 
 325     /* Save previous register address */
 326     reg_save = readb(db->io_addr);
 327 
 328     /* Fill the phyxcer register into REG_0C */
 329     iow(db, DM9000_EPAR, DM9000_PHY | reg);
 330 
 331     /* Fill the written data into REG_0D & REG_0E */
 332     iow(db, DM9000_EPDRL, value);
 333     iow(db, DM9000_EPDRH, value >> 8);
 334 
 335     /* Issue phyxcer write command */
 336     iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 337 
 338     writeb(reg_save, db->io_addr);
 339     spin_unlock_irqrestore(&db->lock, flags);
 340 
 341     dm9000_msleep(db, 1);        /* Wait write complete */
 342 
 343     spin_lock_irqsave(&db->lock, flags);
 344     reg_save = readb(db->io_addr);
 345 
 346     iow(db, DM9000_EPCR, 0x0);    /* Clear phyxcer write command */
 347 
 348     /* restore the previous address */
 349     writeb(reg_save, db->io_addr);
 350 
 351     spin_unlock_irqrestore(&db->lock, flags);
 352     if (!db->in_timeout)
 353         mutex_unlock(&db->addr_lock);
 354 }
 355 
 356 /* dm9000_set_io
 357  *
 358  * select the specified set of io routines to use with the
 359  * device
 360  */
 361 
 362 static void dm9000_set_io(struct board_info *db, int byte_width)
 363 {
 364     /* use the size of the data resource to work out what IO
 365      * routines we want to use
 366      */
 367 
 368     switch (byte_width) {
 369     case 1:
 370         db->dumpblk = dm9000_dumpblk_8bit;
 371         db->outblk  = dm9000_outblk_8bit;
 372         db->inblk   = dm9000_inblk_8bit;
 373         break;
 374 
 375 
 376     case 3:
 377         dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 378     case 2:
 379         db->dumpblk = dm9000_dumpblk_16bit;
 380         db->outblk  = dm9000_outblk_16bit;
 381         db->inblk   = dm9000_inblk_16bit;
 382         break;
 383 
 384     case 4:
 385     default:
 386         db->dumpblk = dm9000_dumpblk_32bit;
 387         db->outblk  = dm9000_outblk_32bit;
 388         db->inblk   = dm9000_inblk_32bit;
 389         break;
 390     }
 391 }
 392 
 393 static void dm9000_schedule_poll(struct board_info *db)
 394 {
 395     if (db->type == TYPE_DM9000E)
 396         schedule_delayed_work(&db->phy_poll, HZ * 2);
 397 }
 398 
 399 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 400 {
 401     struct board_info *dm = to_dm9000_board(dev);
 402 
 403     if (!netif_running(dev))
 404         return -EINVAL;
 405 
 406     return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 407 }
 408 
 409 static unsigned int
 410 dm9000_read_locked(struct board_info *db, int reg)
 411 {
 412     unsigned long flags;
 413     unsigned int ret;
 414 
 415     spin_lock_irqsave(&db->lock, flags);
 416     ret = ior(db, reg);
 417     spin_unlock_irqrestore(&db->lock, flags);
 418 
 419     return ret;
 420 }
 421 
 422 static int dm9000_wait_eeprom(struct board_info *db)
 423 {
 424     unsigned int status;
 425     int timeout = 8;    /* wait max 8msec */
 426 
 427     /* The DM9000 data sheets say we should be able to
 428      * poll the ERRE bit in EPCR to wait for the EEPROM
 429      * operation. From testing several chips, this bit
 430      * does not seem to work.
 431      *
 432      * We attempt to use the bit, but fall back to the
 433      * timeout (which is why we do not return an error
 434      * on expiry) to say that the EEPROM operation has
 435      * completed.
 436      */
 437 
 438     while (1) {
 439         status = dm9000_read_locked(db, DM9000_EPCR);
 440 
 441         if ((status & EPCR_ERRE) == 0)
 442             break;
 443 
 444         msleep(1);
 445 
 446         if (timeout-- < 0) {
 447             dev_dbg(db->dev, "timeout waiting EEPROM\n");
 448             break;
 449         }
 450     }
 451 
 452     return 0;
 453 }
 454 
 455 /*
 456  *  Read a word data from EEPROM
 457  */
 458 static void
 459 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 460 {
 461     unsigned long flags;
 462 
 463     if (db->flags & DM9000_PLATF_NO_EEPROM) {
 464         to[0] = 0xff;
 465         to[1] = 0xff;
 466         return;
 467     }
 468 
 469     mutex_lock(&db->addr_lock);
 470 
 471     spin_lock_irqsave(&db->lock, flags);
 472 
 473     iow(db, DM9000_EPAR, offset);
 474     iow(db, DM9000_EPCR, EPCR_ERPRR);
 475 
 476     spin_unlock_irqrestore(&db->lock, flags);
 477 
 478     dm9000_wait_eeprom(db);
 479 
 480     /* delay for at-least 150uS */
 481     msleep(1);
 482 
 483     spin_lock_irqsave(&db->lock, flags);
 484 
 485     iow(db, DM9000_EPCR, 0x0);
 486 
 487     to[0] = ior(db, DM9000_EPDRL);
 488     to[1] = ior(db, DM9000_EPDRH);
 489 
 490     spin_unlock_irqrestore(&db->lock, flags);
 491 
 492     mutex_unlock(&db->addr_lock);
 493 }
 494 
 495 /*
 496  * Write a word data to SROM
 497  */
 498 static void
 499 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 500 {
 501     unsigned long flags;
 502 
 503     if (db->flags & DM9000_PLATF_NO_EEPROM)
 504         return;
 505 
 506     mutex_lock(&db->addr_lock);
 507 
 508     spin_lock_irqsave(&db->lock, flags);
 509     iow(db, DM9000_EPAR, offset);
 510     iow(db, DM9000_EPDRH, data[1]);
 511     iow(db, DM9000_EPDRL, data[0]);
 512     iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 513     spin_unlock_irqrestore(&db->lock, flags);
 514 
 515     dm9000_wait_eeprom(db);
 516 
 517     mdelay(1);    /* wait at least 150uS to clear */
 518 
 519     spin_lock_irqsave(&db->lock, flags);
 520     iow(db, DM9000_EPCR, 0);
 521     spin_unlock_irqrestore(&db->lock, flags);
 522 
 523     mutex_unlock(&db->addr_lock);
 524 }
 525 
 526 /* ethtool ops */
 527 
 528 static void dm9000_get_drvinfo(struct net_device *dev,
 529                    struct ethtool_drvinfo *info)
 530 {
 531     struct board_info *dm = to_dm9000_board(dev);
 532 
 533     strlcpy(info->driver, CARDNAME, sizeof(info->driver));
 534     strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 535     strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
 536         sizeof(info->bus_info));
 537 }
 538 
 539 static u32 dm9000_get_msglevel(struct net_device *dev)
 540 {
 541     struct board_info *dm = to_dm9000_board(dev);
 542 
 543     return dm->msg_enable;
 544 }
 545 
 546 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 547 {
 548     struct board_info *dm = to_dm9000_board(dev);
 549 
 550     dm->msg_enable = value;
 551 }
 552 
 553 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 554 {
 555     struct board_info *dm = to_dm9000_board(dev);
 556 
 557     mii_ethtool_gset(&dm->mii, cmd);
 558     return 0;
 559 }
 560 
 561 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 562 {
 563     struct board_info *dm = to_dm9000_board(dev);
 564 
 565     return mii_ethtool_sset(&dm->mii, cmd);
 566 }
 567 
 568 static int dm9000_nway_reset(struct net_device *dev)
 569 {
 570     struct board_info *dm = to_dm9000_board(dev);
 571     return mii_nway_restart(&dm->mii);
 572 }
 573 
 574 static int dm9000_set_features(struct net_device *dev,
 575     netdev_features_t features)
 576 {
 577     struct board_info *dm = to_dm9000_board(dev);
 578     netdev_features_t changed = dev->features ^ features;
 579     unsigned long flags;
 580 
 581     if (!(changed & NETIF_F_RXCSUM))
 582         return 0;
 583 
 584     spin_lock_irqsave(&dm->lock, flags);
 585     iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 586     spin_unlock_irqrestore(&dm->lock, flags);
 587 
 588     return 0;
 589 }
 590 
 591 static u32 dm9000_get_link(struct net_device *dev)
 592 {
 593     struct board_info *dm = to_dm9000_board(dev);
 594     u32 ret;
 595 
 596     if (dm->flags & DM9000_PLATF_EXT_PHY)
 597         ret = mii_link_ok(&dm->mii);
 598     else
 599         ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 600 
 601     return ret;
 602 }
 603 
 604 #define DM_EEPROM_MAGIC        (0x444D394B)
 605 
 606 static int dm9000_get_eeprom_len(struct net_device *dev)
 607 {
 608     return 128;
 609 }
 610 
 611 static int dm9000_get_eeprom(struct net_device *dev,
 612                  struct ethtool_eeprom *ee, u8 *data)
 613 {
 614     struct board_info *dm = to_dm9000_board(dev);
 615     int offset = ee->offset;
 616     int len = ee->len;
 617     int i;
 618 
 619     /* EEPROM access is aligned to two bytes */
 620 
 621     if ((len & 1) != 0 || (offset & 1) != 0)
 622         return -EINVAL;
 623 
 624     if (dm->flags & DM9000_PLATF_NO_EEPROM)
 625         return -ENOENT;
 626 
 627     ee->magic = DM_EEPROM_MAGIC;
 628 
 629     for (i = 0; i < len; i += 2)
 630         dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 631 
 632     return 0;
 633 }
 634 
 635 static int dm9000_set_eeprom(struct net_device *dev,
 636                  struct ethtool_eeprom *ee, u8 *data)
 637 {
 638     struct board_info *dm = to_dm9000_board(dev);
 639     int offset = ee->offset;
 640     int len = ee->len;
 641     int done;
 642 
 643     /* EEPROM access is aligned to two bytes */
 644 
 645     if (dm->flags & DM9000_PLATF_NO_EEPROM)
 646         return -ENOENT;
 647 
 648     if (ee->magic != DM_EEPROM_MAGIC)
 649         return -EINVAL;
 650 
 651     while (len > 0) {
 652         if (len & 1 || offset & 1) {
 653             int which = offset & 1;
 654             u8 tmp[2];
 655 
 656             dm9000_read_eeprom(dm, offset / 2, tmp);
 657             tmp[which] = *data;
 658             dm9000_write_eeprom(dm, offset / 2, tmp);
 659 
 660             done = 1;
 661         } else {
 662             dm9000_write_eeprom(dm, offset / 2, data);
 663             done = 2;
 664         }
 665 
 666         data += done;
 667         offset += done;
 668         len -= done;
 669     }
 670 
 671     return 0;
 672 }
 673 
 674 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 675 {
 676     struct board_info *dm = to_dm9000_board(dev);
 677 
 678     memset(w, 0, sizeof(struct ethtool_wolinfo));
 679 
 680     /* note, we could probably support wake-phy too */
 681     w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 682     w->wolopts = dm->wake_state;
 683 }
 684 
 685 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 686 {
 687     struct board_info *dm = to_dm9000_board(dev);
 688     unsigned long flags;
 689     u32 opts = w->wolopts;
 690     u32 wcr = 0;
 691 
 692     if (!dm->wake_supported)
 693         return -EOPNOTSUPP;
 694 
 695     if (opts & ~WAKE_MAGIC)
 696         return -EINVAL;
 697 
 698     if (opts & WAKE_MAGIC)
 699         wcr |= WCR_MAGICEN;
 700 
 701     mutex_lock(&dm->addr_lock);
 702 
 703     spin_lock_irqsave(&dm->lock, flags);
 704     iow(dm, DM9000_WCR, wcr);
 705     spin_unlock_irqrestore(&dm->lock, flags);
 706 
 707     mutex_unlock(&dm->addr_lock);
 708 
 709     if (dm->wake_state != opts) {
 710         /* change in wol state, update IRQ state */
 711 
 712         if (!dm->wake_state)
 713             irq_set_irq_wake(dm->irq_wake, 1);
 714         else if (dm->wake_state && !opts)
 715             irq_set_irq_wake(dm->irq_wake, 0);
 716     }
 717 
 718     dm->wake_state = opts;
 719     return 0;
 720 }
 721 
 722 static const struct ethtool_ops dm9000_ethtool_ops = {
 723     .get_drvinfo        = dm9000_get_drvinfo,
 724     .get_settings        = dm9000_get_settings,
 725     .set_settings        = dm9000_set_settings,
 726     .get_msglevel        = dm9000_get_msglevel,
 727     .set_msglevel        = dm9000_set_msglevel,
 728     .nway_reset        = dm9000_nway_reset,
 729     .get_link        = dm9000_get_link,
 730     .get_wol        = dm9000_get_wol,
 731     .set_wol        = dm9000_set_wol,
 732     .get_eeprom_len        = dm9000_get_eeprom_len,
 733     .get_eeprom        = dm9000_get_eeprom,
 734     .set_eeprom        = dm9000_set_eeprom,
 735 };
 736 
 737 static void dm9000_show_carrier(struct board_info *db,
 738                 unsigned carrier, unsigned nsr)
 739 {
 740     int lpa;
 741     struct net_device *ndev = db->ndev;
 742     struct mii_if_info *mii = &db->mii;
 743     unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 744 
 745     if (carrier) {
 746         lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 747         dev_info(db->dev,
 748              "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 749              ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 750              (ncr & NCR_FDX) ? "full" : "half", lpa);
 751     } else {
 752         dev_info(db->dev, "%s: link down\n", ndev->name);
 753     }
 754 }
 755 
 756 static void
 757 dm9000_poll_work(struct work_struct *w)
 758 {
 759     struct delayed_work *dw = to_delayed_work(w);
 760     struct board_info *db = container_of(dw, struct board_info, phy_poll);
 761     struct net_device *ndev = db->ndev;
 762 
 763     if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 764         !(db->flags & DM9000_PLATF_EXT_PHY)) {
 765         unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 766         unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 767         unsigned new_carrier;
 768 
 769         new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 770 
 771         if (old_carrier != new_carrier) {
 772             if (netif_msg_link(db))
 773                 dm9000_show_carrier(db, new_carrier, nsr);
 774 
 775             if (!new_carrier)
 776                 netif_carrier_off(ndev);
 777             else
 778                 netif_carrier_on(ndev);
 779         }
 780     } else
 781         mii_check_media(&db->mii, netif_msg_link(db), 0);
 782 
 783     if (netif_running(ndev))
 784         dm9000_schedule_poll(db);
 785 }
 786 
 787 /* dm9000_release_board
 788  *
 789  * release a board, and any mapped resources
 790  */
 791 
 792 static void
 793 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 794 {
 795     /* unmap our resources */
 796 
 797     iounmap(db->io_addr);
 798     iounmap(db->io_data);
 799 
 800     /* release the resources */
 801 
 802     if (db->data_req)
 803         release_resource(db->data_req);
 804     kfree(db->data_req);
 805 
 806     if (db->addr_req)
 807         release_resource(db->addr_req);
 808     kfree(db->addr_req);
 809 }
 810 
 811 static unsigned char dm9000_type_to_char(enum dm9000_type type)
 812 {
 813     switch (type) {
 814     case TYPE_DM9000E: return 'e';
 815     case TYPE_DM9000A: return 'a';
 816     case TYPE_DM9000B: return 'b';
 817     }
 818 
 819     return '?';
 820 }
 821 
 822 /*
 823  *  Set DM9000 multicast address
 824  */
 825 static void
 826 dm9000_hash_table_unlocked(struct net_device *dev)
 827 {
 828     struct board_info *db = netdev_priv(dev);
 829     struct netdev_hw_addr *ha;
 830     int i, oft;
 831     u32 hash_val;
 832     u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 833     u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 834 
 835     dm9000_dbg(db, 1, "entering %s\n", __func__);
 836 
 837     for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 838         iow(db, oft, dev->dev_addr[i]);
 839 
 840     if (dev->flags & IFF_PROMISC)
 841         rcr |= RCR_PRMSC;
 842 
 843     if (dev->flags & IFF_ALLMULTI)
 844         rcr |= RCR_ALL;
 845 
 846     /* the multicast address in Hash Table : 64 bits */
 847     netdev_for_each_mc_addr(ha, dev) {
 848         hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 849         hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 850     }
 851 
 852     /* Write the hash table to MAC MD table */
 853     for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 854         iow(db, oft++, hash_table[i]);
 855         iow(db, oft++, hash_table[i] >> 8);
 856     }
 857 
 858     iow(db, DM9000_RCR, rcr);
 859 }
 860 
 861 static void
 862 dm9000_hash_table(struct net_device *dev)
 863 {
 864     struct board_info *db = netdev_priv(dev);
 865     unsigned long flags;
 866 
 867     spin_lock_irqsave(&db->lock, flags);
 868     dm9000_hash_table_unlocked(dev);
 869     spin_unlock_irqrestore(&db->lock, flags);
 870 }
 871 
 872 static void
 873 dm9000_mask_interrupts(struct board_info *db)
 874 {
 875     iow(db, DM9000_IMR, IMR_PAR);
 876 }
 877 
 878 static void
 879 dm9000_unmask_interrupts(struct board_info *db)
 880 {
 881     iow(db, DM9000_IMR, db->imr_all);
 882 }
 883 
 884 /*
 885  * Initialize dm9000 board
 886  */
 887 static void
 888 dm9000_init_dm9000(struct net_device *dev)
 889 {
 890     struct board_info *db = netdev_priv(dev);
 891     unsigned int imr;
 892     unsigned int ncr;
 893 
 894     dm9000_dbg(db, 1, "entering %s\n", __func__);
 895 
 896     dm9000_reset(db);
 897     dm9000_mask_interrupts(db);
 898 
 899     /* I/O mode */
 900     db->io_mode = ior(db, DM9000_ISR) >> 6;    /* ISR bit7:6 keeps I/O mode */
 901 
 902     /* Checksum mode */
 903     if (dev->hw_features & NETIF_F_RXCSUM)
 904         iow(db, DM9000_RCSR,
 905             (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 906 
 907     iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
 908     iow(db, DM9000_GPR, 0);
 909 
 910     /* If we are dealing with DM9000B, some extra steps are required: a
 911      * manual phy reset, and setting init params.
 912      */
 913     if (db->type == TYPE_DM9000B) {
 914         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 915         dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 916     }
 917 
 918     ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 919 
 920     /* if wol is needed, then always set NCR_WAKEEN otherwise we end
 921      * up dumping the wake events if we disable this. There is already
 922      * a wake-mask in DM9000_WCR */
 923     if (db->wake_supported)
 924         ncr |= NCR_WAKEEN;
 925 
 926     iow(db, DM9000_NCR, ncr);
 927 
 928     /* Program operating register */
 929     iow(db, DM9000_TCR, 0);            /* TX Polling clear */
 930     iow(db, DM9000_BPTR, 0x3f);    /* Less 3Kb, 200us */
 931     iow(db, DM9000_FCR, 0xff);    /* Flow Control */
 932     iow(db, DM9000_SMCR, 0);        /* Special Mode */
 933     /* clear TX status */
 934     iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 935     iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 936 
 937     /* Set address filter table */
 938     dm9000_hash_table_unlocked(dev);
 939 
 940     imr = IMR_PAR | IMR_PTM | IMR_PRM;
 941     if (db->type != TYPE_DM9000E)
 942         imr |= IMR_LNKCHNG;
 943 
 944     db->imr_all = imr;
 945 
 946     /* Init Driver variable */
 947     db->tx_pkt_cnt = 0;
 948     db->queue_pkt_len = 0;
 949     dev->trans_start = jiffies;
 950 }
 951 
 952 /* Our watchdog timed out. Called by the networking layer */
 953 static void dm9000_timeout(struct net_device *dev)
 954 {
 955     struct board_info *db = netdev_priv(dev);
 956     u8 reg_save;
 957     unsigned long flags;
 958 
 959     /* Save previous register address */
 960     spin_lock_irqsave(&db->lock, flags);
 961     db->in_timeout = 1;
 962     reg_save = readb(db->io_addr);
 963 
 964     netif_stop_queue(dev);
 965     dm9000_init_dm9000(dev);
 966     dm9000_unmask_interrupts(db);
 967     /* We can accept TX packets again */
 968     dev->trans_start = jiffies; /* prevent tx timeout */
 969     netif_wake_queue(dev);
 970 
 971     /* Restore previous register address */
 972     writeb(reg_save, db->io_addr);
 973     db->in_timeout = 0;
 974     spin_unlock_irqrestore(&db->lock, flags);
 975 }
 976 
 977 static void dm9000_send_packet(struct net_device *dev,
 978                    int ip_summed,
 979                    u16 pkt_len)
 980 {
 981     struct board_info *dm = to_dm9000_board(dev);
 982 
 983     /* The DM9000 is not smart enough to leave fragmented packets alone. */
 984     if (dm->ip_summed != ip_summed) {
 985         if (ip_summed == CHECKSUM_NONE)
 986             iow(dm, DM9000_TCCR, 0);
 987         else
 988             iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 989         dm->ip_summed = ip_summed;
 990     }
 991 
 992     /* Set TX length to DM9000 */
 993     iow(dm, DM9000_TXPLL, pkt_len);
 994     iow(dm, DM9000_TXPLH, pkt_len >> 8);
 995 
 996     /* Issue TX polling command */
 997     iow(dm, DM9000_TCR, TCR_TXREQ);    /* Cleared after TX complete */
 998 }
 999 
1000 /*
1001  *  Hardware start transmission.
1002  *  Send a packet to media from the upper layer.
1003  */
1004 static int
1005 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1006 {
1007     unsigned long flags;
1008     struct board_info *db = netdev_priv(dev);
1009 
1010     dm9000_dbg(db, 3, "%s:\n", __func__);
1011 
1012     if (db->tx_pkt_cnt > 1)
1013         return NETDEV_TX_BUSY;
1014 
1015     spin_lock_irqsave(&db->lock, flags);
1016 
1017     /* Move data to DM9000 TX RAM */
1018     writeb(DM9000_MWCMD, db->io_addr);
1019 
1020     (db->outblk)(db->io_data, skb->data, skb->len);
1021     dev->stats.tx_bytes += skb->len;
1022 
1023     db->tx_pkt_cnt++;
1024     /* TX control: First packet immediately send, second packet queue */
1025     if (db->tx_pkt_cnt == 1) {
1026         dm9000_send_packet(dev, skb->ip_summed, skb->len);
1027     } else {
1028         /* Second packet */
1029         db->queue_pkt_len = skb->len;
1030         db->queue_ip_summed = skb->ip_summed;
1031         netif_stop_queue(dev);
1032     }
1033 
1034     spin_unlock_irqrestore(&db->lock, flags);
1035 
1036     /* free this SKB */
1037     dev_consume_skb_any(skb);
1038 
1039     return NETDEV_TX_OK;
1040 }
1041 
1042 /*
1043  * DM9000 interrupt handler
1044  * receive the packet to upper layer, free the transmitted packet
1045  */
1046 
1047 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1048 {
1049     int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1050 
1051     if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1052         /* One packet sent complete */
1053         db->tx_pkt_cnt--;
1054         dev->stats.tx_packets++;
1055 
1056         if (netif_msg_tx_done(db))
1057             dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1058 
1059         /* Queue packet check & send */
1060         if (db->tx_pkt_cnt > 0)
1061             dm9000_send_packet(dev, db->queue_ip_summed,
1062                        db->queue_pkt_len);
1063         netif_wake_queue(dev);
1064     }
1065 }
1066 
1067 struct dm9000_rxhdr {
1068     u8    RxPktReady;
1069     u8    RxStatus;
1070     __le16    RxLen;
1071 } __packed;
1072 
1073 /*
1074  *  Received a packet and pass to upper layer
1075  */
1076 static void
1077 dm9000_rx(struct net_device *dev)
1078 {
1079     struct board_info *db = netdev_priv(dev);
1080     struct dm9000_rxhdr rxhdr;
1081     struct sk_buff *skb;
1082     u8 rxbyte, *rdptr;
1083     bool GoodPacket;
1084     int RxLen;
1085 
1086     /* Check packet ready or not */
1087     do {
1088         ior(db, DM9000_MRCMDX);    /* Dummy read */
1089 
1090         /* Get most updated data */
1091         rxbyte = readb(db->io_data);
1092 
1093         /* Status check: this byte must be 0 or 1 */
1094         if (rxbyte & DM9000_PKT_ERR) {
1095             dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1096             iow(db, DM9000_RCR, 0x00);    /* Stop Device */
1097             return;
1098         }
1099 
1100         if (!(rxbyte & DM9000_PKT_RDY))
1101             return;
1102 
1103         /* A packet ready now  & Get status/length */
1104         GoodPacket = true;
1105         writeb(DM9000_MRCMD, db->io_addr);
1106 
1107         (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1108 
1109         RxLen = le16_to_cpu(rxhdr.RxLen);
1110 
1111         if (netif_msg_rx_status(db))
1112             dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1113                 rxhdr.RxStatus, RxLen);
1114 
1115         /* Packet Status check */
1116         if (RxLen < 0x40) {
1117             GoodPacket = false;
1118             if (netif_msg_rx_err(db))
1119                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1120         }
1121 
1122         if (RxLen > DM9000_PKT_MAX) {
1123             dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1124         }
1125 
1126         /* rxhdr.RxStatus is identical to RSR register. */
1127         if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1128                       RSR_PLE | RSR_RWTO |
1129                       RSR_LCS | RSR_RF)) {
1130             GoodPacket = false;
1131             if (rxhdr.RxStatus & RSR_FOE) {
1132                 if (netif_msg_rx_err(db))
1133                     dev_dbg(db->dev, "fifo error\n");
1134                 dev->stats.rx_fifo_errors++;
1135             }
1136             if (rxhdr.RxStatus & RSR_CE) {
1137                 if (netif_msg_rx_err(db))
1138                     dev_dbg(db->dev, "crc error\n");
1139                 dev->stats.rx_crc_errors++;
1140             }
1141             if (rxhdr.RxStatus & RSR_RF) {
1142                 if (netif_msg_rx_err(db))
1143                     dev_dbg(db->dev, "length error\n");
1144                 dev->stats.rx_length_errors++;
1145             }
1146         }
1147 
1148         /* Move data from DM9000 */
1149         if (GoodPacket &&
1150             ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1151             skb_reserve(skb, 2);
1152             rdptr = (u8 *) skb_put(skb, RxLen - 4);
1153 
1154             /* Read received packet from RX SRAM */
1155 
1156             (db->inblk)(db->io_data, rdptr, RxLen);
1157             dev->stats.rx_bytes += RxLen;
1158 
1159             /* Pass to upper layer */
1160             skb->protocol = eth_type_trans(skb, dev);
1161             if (dev->features & NETIF_F_RXCSUM) {
1162                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1163                     skb->ip_summed = CHECKSUM_UNNECESSARY;
1164                 else
1165                     skb_checksum_none_assert(skb);
1166             }
1167             netif_rx(skb);
1168             dev->stats.rx_packets++;
1169 
1170         } else {
1171             /* need to dump the packet's data */
1172 
1173             (db->dumpblk)(db->io_data, RxLen);
1174         }
1175     } while (rxbyte & DM9000_PKT_RDY);
1176 }
1177 
1178 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1179 {
1180     struct net_device *dev = dev_id;
1181     struct board_info *db = netdev_priv(dev);
1182     int int_status;
1183     unsigned long flags;
1184     u8 reg_save;
1185 
1186     dm9000_dbg(db, 3, "entering %s\n", __func__);
1187 
1188     /* A real interrupt coming */
1189 
1190     /* holders of db->lock must always block IRQs */
1191     spin_lock_irqsave(&db->lock, flags);
1192 
1193     /* Save previous register address */
1194     reg_save = readb(db->io_addr);
1195 
1196     dm9000_mask_interrupts(db);
1197     /* Got DM9000 interrupt status */
1198     int_status = ior(db, DM9000_ISR);    /* Got ISR */
1199     iow(db, DM9000_ISR, int_status);    /* Clear ISR status */
1200 
1201     if (netif_msg_intr(db))
1202         dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1203 
1204     /* Received the coming packet */
1205     if (int_status & ISR_PRS)
1206         dm9000_rx(dev);
1207 
1208     /* Trnasmit Interrupt check */
1209     if (int_status & ISR_PTS)
1210         dm9000_tx_done(dev, db);
1211 
1212     if (db->type != TYPE_DM9000E) {
1213         if (int_status & ISR_LNKCHNG) {
1214             /* fire a link-change request */
1215             schedule_delayed_work(&db->phy_poll, 1);
1216         }
1217     }
1218 
1219     dm9000_unmask_interrupts(db);
1220     /* Restore previous register address */
1221     writeb(reg_save, db->io_addr);
1222 
1223     spin_unlock_irqrestore(&db->lock, flags);
1224 
1225     return IRQ_HANDLED;
1226 }
1227 
1228 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1229 {
1230     struct net_device *dev = dev_id;
1231     struct board_info *db = netdev_priv(dev);
1232     unsigned long flags;
1233     unsigned nsr, wcr;
1234 
1235     spin_lock_irqsave(&db->lock, flags);
1236 
1237     nsr = ior(db, DM9000_NSR);
1238     wcr = ior(db, DM9000_WCR);
1239 
1240     dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1241 
1242     if (nsr & NSR_WAKEST) {
1243         /* clear, so we can avoid */
1244         iow(db, DM9000_NSR, NSR_WAKEST);
1245 
1246         if (wcr & WCR_LINKST)
1247             dev_info(db->dev, "wake by link status change\n");
1248         if (wcr & WCR_SAMPLEST)
1249             dev_info(db->dev, "wake by sample packet\n");
1250         if (wcr & WCR_MAGICST)
1251             dev_info(db->dev, "wake by magic packet\n");
1252         if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1253             dev_err(db->dev, "wake signalled with no reason? "
1254                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1255     }
1256 
1257     spin_unlock_irqrestore(&db->lock, flags);
1258 
1259     return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1260 }
1261 
1262 #ifdef CONFIG_NET_POLL_CONTROLLER
1263 /*
1264  *Used by netconsole
1265  */
1266 static void dm9000_poll_controller(struct net_device *dev)
1267 {
1268     disable_irq(dev->irq);
1269     dm9000_interrupt(dev->irq, dev);
1270     enable_irq(dev->irq);
1271 }
1272 #endif
1273 
1274 /*
1275  *  Open the interface.
1276  *  The interface is opened whenever "ifconfig" actives it.
1277  */
1278 static int
1279 dm9000_open(struct net_device *dev)
1280 {
1281     struct board_info *db = netdev_priv(dev);
1282     unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1283 
1284     if (netif_msg_ifup(db))
1285         dev_dbg(db->dev, "enabling %s\n", dev->name);
1286 
1287     /* If there is no IRQ type specified, default to something that
1288      * may work, and tell the user that this is a problem */
1289 
1290     if (irqflags == IRQF_TRIGGER_NONE)
1291         irqflags = irq_get_trigger_type(dev->irq);
1292 
1293     if (irqflags == IRQF_TRIGGER_NONE)
1294         dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1295 
1296     irqflags |= IRQF_SHARED;
1297 
1298     /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1299     iow(db, DM9000_GPR, 0);    /* REG_1F bit0 activate phyxcer */
1300     mdelay(1); /* delay needs by DM9000B */
1301 
1302     /* Initialize DM9000 board */
1303     dm9000_init_dm9000(dev);
1304 
1305     if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1306         return -EAGAIN;
1307     /* Now that we have an interrupt handler hooked up we can unmask
1308      * our interrupts
1309      */
1310     dm9000_unmask_interrupts(db);
1311 
1312     /* Init driver variable */
1313     db->dbug_cnt = 0;
1314 
1315     mii_check_media(&db->mii, netif_msg_link(db), 1);
1316     netif_start_queue(dev);
1317 
1318     /* Poll initial link status */
1319     schedule_delayed_work(&db->phy_poll, 1);
1320 
1321     return 0;
1322 }
1323 
1324 static void
1325 dm9000_shutdown(struct net_device *dev)
1326 {
1327     struct board_info *db = netdev_priv(dev);
1328 
1329     /* RESET device */
1330     dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);    /* PHY RESET */
1331     iow(db, DM9000_GPR, 0x01);    /* Power-Down PHY */
1332     dm9000_mask_interrupts(db);
1333     iow(db, DM9000_RCR, 0x00);    /* Disable RX */
1334 }
1335 
1336 /*
1337  * Stop the interface.
1338  * The interface is stopped when it is brought.
1339  */
1340 static int
1341 dm9000_stop(struct net_device *ndev)
1342 {
1343     struct board_info *db = netdev_priv(ndev);
1344 
1345     if (netif_msg_ifdown(db))
1346         dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1347 
1348     cancel_delayed_work_sync(&db->phy_poll);
1349 
1350     netif_stop_queue(ndev);
1351     netif_carrier_off(ndev);
1352 
1353     /* free interrupt */
1354     free_irq(ndev->irq, ndev);
1355 
1356     dm9000_shutdown(ndev);
1357 
1358     return 0;
1359 }
1360 
1361 static const struct net_device_ops dm9000_netdev_ops = {
1362     .ndo_open        = dm9000_open,
1363     .ndo_stop        = dm9000_stop,
1364     .ndo_start_xmit        = dm9000_start_xmit,
1365     .ndo_tx_timeout        = dm9000_timeout,
1366     .ndo_set_rx_mode    = dm9000_hash_table,
1367     .ndo_do_ioctl        = dm9000_ioctl,
1368     .ndo_change_mtu        = eth_change_mtu,
1369     .ndo_set_features    = dm9000_set_features,
1370     .ndo_validate_addr    = eth_validate_addr,
1371     .ndo_set_mac_address    = eth_mac_addr,
1372 #ifdef CONFIG_NET_POLL_CONTROLLER
1373     .ndo_poll_controller    = dm9000_poll_controller,
1374 #endif
1375 };
1376 
1377 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1378 {
1379     struct dm9000_plat_data *pdata;
1380     struct device_node *np = dev->of_node;
1381     const void *mac_addr;
1382 
1383     if (!IS_ENABLED(CONFIG_OF) || !np)
1384         return ERR_PTR(-ENXIO);
1385 
1386     pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1387     if (!pdata)
1388         return ERR_PTR(-ENOMEM);
1389 
1390     if (of_find_property(np, "davicom,ext-phy", NULL))
1391         pdata->flags |= DM9000_PLATF_EXT_PHY;
1392     if (of_find_property(np, "davicom,no-eeprom", NULL))
1393         pdata->flags |= DM9000_PLATF_NO_EEPROM;
1394 
1395     mac_addr = of_get_mac_address(np);
1396     if (mac_addr)
1397         memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1398 
1399     return pdata;
1400 }
1401 
1402 /*
1403  * Search DM9000 board, allocate space and register it
1404  */
1405 static int
1406 dm9000_probe(struct platform_device *pdev)
1407 {
1408     struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1409     struct board_info *db;    /* Point a board information structure */
1410     struct net_device *ndev;
1411     struct device *dev = &pdev->dev;
1412     const unsigned char *mac_src;
1413     int ret = 0;
1414     int iosize;
1415     int i;
1416     u32 id_val;
1417     int reset_gpios;
1418     enum of_gpio_flags flags;
1419     struct regulator *power;
1420 
1421     power = devm_regulator_get(dev, "vcc");
1422     if (IS_ERR(power)) {
1423         if (PTR_ERR(power) == -EPROBE_DEFER)
1424             return -EPROBE_DEFER;
1425         dev_dbg(dev, "no regulator provided\n");
1426     } else {
1427         ret = regulator_enable(power);
1428         if (ret != 0) {
1429             dev_err(dev,
1430                 "Failed to enable power regulator: %d\n", ret);
1431             return ret;
1432         }
1433         dev_dbg(dev, "regulator enabled\n");
1434     }
1435 
1436     reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1437                           &flags);
1438     if (gpio_is_valid(reset_gpios)) {
1439         ret = devm_gpio_request_one(dev, reset_gpios, flags,
1440                         "dm9000_reset");
1441         if (ret) {
1442             dev_err(dev, "failed to request reset gpio %d: %d\n",
1443                 reset_gpios, ret);
1444             return -ENODEV;
1445         }
1446 
1447         /* According to manual PWRST# Low Period Min 1ms */
1448         msleep(2);
1449         gpio_set_value(reset_gpios, 1);
1450         /* Needs 3ms to read eeprom when PWRST is deasserted */
1451         msleep(4);
1452     }
1453 
1454     if (!pdata) {
1455         pdata = dm9000_parse_dt(&pdev->dev);
1456         if (IS_ERR(pdata))
1457             return PTR_ERR(pdata);
1458     }
1459 
1460     /* Init network device */
1461     ndev = alloc_etherdev(sizeof(struct board_info));
1462     if (!ndev)
1463         return -ENOMEM;
1464 
1465     SET_NETDEV_DEV(ndev, &pdev->dev);
1466 
1467     dev_dbg(&pdev->dev, "dm9000_probe()\n");
1468 
1469     /* setup board info structure */
1470     db = netdev_priv(ndev);
1471 
1472     db->dev = &pdev->dev;
1473     db->ndev = ndev;
1474 
1475     spin_lock_init(&db->lock);
1476     mutex_init(&db->addr_lock);
1477 
1478     INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1479 
1480     db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481     db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1482     db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1483 
1484     if (db->addr_res == NULL || db->data_res == NULL ||
1485         db->irq_res == NULL) {
1486         dev_err(db->dev, "insufficient resources\n");
1487         ret = -ENOENT;
1488         goto out;
1489     }
1490 
1491     db->irq_wake = platform_get_irq(pdev, 1);
1492     if (db->irq_wake >= 0) {
1493         dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1494 
1495         ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1496                   IRQF_SHARED, dev_name(db->dev), ndev);
1497         if (ret) {
1498             dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1499         } else {
1500 
1501             /* test to see if irq is really wakeup capable */
1502             ret = irq_set_irq_wake(db->irq_wake, 1);
1503             if (ret) {
1504                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1505                     db->irq_wake, ret);
1506                 ret = 0;
1507             } else {
1508                 irq_set_irq_wake(db->irq_wake, 0);
1509                 db->wake_supported = 1;
1510             }
1511         }
1512     }
1513 
1514     iosize = resource_size(db->addr_res);
1515     db->addr_req = request_mem_region(db->addr_res->start, iosize,
1516                       pdev->name);
1517 
1518     if (db->addr_req == NULL) {
1519         dev_err(db->dev, "cannot claim address reg area\n");
1520         ret = -EIO;
1521         goto out;
1522     }
1523 
1524     db->io_addr = ioremap(db->addr_res->start, iosize);
1525 
1526     if (db->io_addr == NULL) {
1527         dev_err(db->dev, "failed to ioremap address reg\n");
1528         ret = -EINVAL;
1529         goto out;
1530     }
1531 
1532     iosize = resource_size(db->data_res);
1533     db->data_req = request_mem_region(db->data_res->start, iosize,
1534                       pdev->name);
1535 
1536     if (db->data_req == NULL) {
1537         dev_err(db->dev, "cannot claim data reg area\n");
1538         ret = -EIO;
1539         goto out;
1540     }
1541 
1542     db->io_data = ioremap(db->data_res->start, iosize);
1543 
1544     if (db->io_data == NULL) {
1545         dev_err(db->dev, "failed to ioremap data reg\n");
1546         ret = -EINVAL;
1547         goto out;
1548     }
1549 
1550     /* fill in parameters for net-dev structure */
1551     ndev->base_addr = (unsigned long)db->io_addr;
1552     ndev->irq    = db->irq_res->start;
1553 
1554     /* ensure at least we have a default set of IO routines */
1555     dm9000_set_io(db, iosize);
1556 
1557     /* check to see if anything is being over-ridden */
1558     if (pdata != NULL) {
1559         /* check to see if the driver wants to over-ride the
1560          * default IO width */
1561 
1562         if (pdata->flags & DM9000_PLATF_8BITONLY)
1563             dm9000_set_io(db, 1);
1564 
1565         if (pdata->flags & DM9000_PLATF_16BITONLY)
1566             dm9000_set_io(db, 2);
1567 
1568         if (pdata->flags & DM9000_PLATF_32BITONLY)
1569             dm9000_set_io(db, 4);
1570 
1571         /* check to see if there are any IO routine
1572          * over-rides */
1573 
1574         if (pdata->inblk != NULL)
1575             db->inblk = pdata->inblk;
1576 
1577         if (pdata->outblk != NULL)
1578             db->outblk = pdata->outblk;
1579 
1580         if (pdata->dumpblk != NULL)
1581             db->dumpblk = pdata->dumpblk;
1582 
1583         db->flags = pdata->flags;
1584     }
1585 
1586 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1587     db->flags |= DM9000_PLATF_SIMPLE_PHY;
1588 #endif
1589 
1590     dm9000_reset(db);
1591 
1592     /* try multiple times, DM9000 sometimes gets the read wrong */
1593     for (i = 0; i < 8; i++) {
1594         id_val  = ior(db, DM9000_VIDL);
1595         id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1596         id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1597         id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1598 
1599         if (id_val == DM9000_ID)
1600             break;
1601         dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1602     }
1603 
1604     if (id_val != DM9000_ID) {
1605         dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1606         ret = -ENODEV;
1607         goto out;
1608     }
1609 
1610     /* Identify what type of DM9000 we are working on */
1611 
1612     id_val = ior(db, DM9000_CHIPR);
1613     dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1614 
1615     switch (id_val) {
1616     case CHIPR_DM9000A:
1617         db->type = TYPE_DM9000A;
1618         break;
1619     case CHIPR_DM9000B:
1620         db->type = TYPE_DM9000B;
1621         break;
1622     default:
1623         dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1624         db->type = TYPE_DM9000E;
1625     }
1626 
1627     /* dm9000a/b are capable of hardware checksum offload */
1628     if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1629         ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1630         ndev->features |= ndev->hw_features;
1631     }
1632 
1633     /* from this point we assume that we have found a DM9000 */
1634 
1635     ndev->netdev_ops    = &dm9000_netdev_ops;
1636     ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1637     ndev->ethtool_ops    = &dm9000_ethtool_ops;
1638 
1639     db->msg_enable       = NETIF_MSG_LINK;
1640     db->mii.phy_id_mask  = 0x1f;
1641     db->mii.reg_num_mask = 0x1f;
1642     db->mii.force_media  = 0;
1643     db->mii.full_duplex  = 0;
1644     db->mii.dev         = ndev;
1645     db->mii.mdio_read    = dm9000_phy_read;
1646     db->mii.mdio_write   = dm9000_phy_write;
1647 
1648     mac_src = "eeprom";
1649 
1650     /* try reading the node address from the attached EEPROM */
1651     for (i = 0; i < 6; i += 2)
1652         dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1653 
1654     if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1655         mac_src = "platform data";
1656         memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1657     }
1658 
1659     if (!is_valid_ether_addr(ndev->dev_addr)) {
1660         /* try reading from mac */
1661 
1662         mac_src = "chip";
1663         for (i = 0; i < 6; i++)
1664             ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1665     }
1666 
1667     if (!is_valid_ether_addr(ndev->dev_addr)) {
1668         dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1669              "set using ifconfig\n", ndev->name);
1670 
1671         eth_hw_addr_random(ndev);
1672         mac_src = "random";
1673     }
1674 
1675 
1676     platform_set_drvdata(pdev, ndev);
1677     ret = register_netdev(ndev);
1678 
1679     if (ret == 0)
1680         printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1681                ndev->name, dm9000_type_to_char(db->type),
1682                db->io_addr, db->io_data, ndev->irq,
1683                ndev->dev_addr, mac_src);
1684     return 0;
1685 
1686 out:
1687     dev_err(db->dev, "not found (%d).\n", ret);
1688 
1689     dm9000_release_board(pdev, db);
1690     free_netdev(ndev);
1691 
1692     return ret;
1693 }
1694 
1695 static int
1696 dm9000_drv_suspend(struct device *dev)
1697 {
1698     struct platform_device *pdev = to_platform_device(dev);
1699     struct net_device *ndev = platform_get_drvdata(pdev);
1700     struct board_info *db;
1701 
1702     if (ndev) {
1703         db = netdev_priv(ndev);
1704         db->in_suspend = 1;
1705 
1706         if (!netif_running(ndev))
1707             return 0;
1708 
1709         netif_device_detach(ndev);
1710 
1711         /* only shutdown if not using WoL */
1712         if (!db->wake_state)
1713             dm9000_shutdown(ndev);
1714     }
1715     return 0;
1716 }
1717 
1718 static int
1719 dm9000_drv_resume(struct device *dev)
1720 {
1721     struct platform_device *pdev = to_platform_device(dev);
1722     struct net_device *ndev = platform_get_drvdata(pdev);
1723     struct board_info *db = netdev_priv(ndev);
1724 
1725     if (ndev) {
1726         if (netif_running(ndev)) {
1727             /* reset if we were not in wake mode to ensure if
1728              * the device was powered off it is in a known state */
1729             if (!db->wake_state) {
1730                 dm9000_init_dm9000(ndev);
1731                 dm9000_unmask_interrupts(db);
1732             }
1733 
1734             netif_device_attach(ndev);
1735         }
1736 
1737         db->in_suspend = 0;
1738     }
1739     return 0;
1740 }
1741 
1742 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1743     .suspend    = dm9000_drv_suspend,
1744     .resume        = dm9000_drv_resume,
1745 };
1746 
1747 static int
1748 dm9000_drv_remove(struct platform_device *pdev)
1749 {
1750     struct net_device *ndev = platform_get_drvdata(pdev);
1751 
1752     unregister_netdev(ndev);
1753     dm9000_release_board(pdev, netdev_priv(ndev));
1754     free_netdev(ndev);        /* free device structure */
1755 
1756     dev_dbg(&pdev->dev, "released and freed device\n");
1757     return 0;
1758 }
1759 
1760 #ifdef CONFIG_OF
1761 static const struct of_device_id dm9000_of_matches[] = {
1762     { .compatible = "davicom,dm9000", },
1763     { /* sentinel */ }
1764 };
1765 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1766 #endif
1767 
1768 static struct platform_driver dm9000_driver = {
1769     .driver    = {
1770         .name    = "dm9000",
1771         .pm     = &dm9000_drv_pm_ops,
1772         .of_match_table = of_match_ptr(dm9000_of_matches),
1773     },
1774     .probe   = dm9000_probe,
1775     .remove  = dm9000_drv_remove,
1776 };
1777 
1778 module_platform_driver(dm9000_driver);
1779 
1780 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1781 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1782 MODULE_LICENSE("GPL");
1783 MODULE_ALIAS("platform:dm9000");

   DM9000 驱动的实现与具体的CPU无关,在将该驱动移植到特定的平台时,只需要在板文件中为与板上 DM9000 对应的平台设备的寄存器和数据基地址进行赋值,并指定正确的 IRQ 资源即可,以下代码给出了在 arch/arm/mach-at91/board-sam9261ek.c 板文件中对DM9000 添加的内容:

 1 /**
 2  *  board-sam9261ek 板文件中的 DM9000 的平台设备
 3  */
 4 
 5 static struct resource dm9000_resource[] = {
 6     [0] = {
 7         .start = AT91_CHIPSELECT_2,
 8         .end  = AT91_CHIPSELECT_2 + 3,
 9         .flags = IORESOURCE_MEM
10     },
11     [1] = {
12         .start = AT91_CHIPSELECT_2 + 0x44,
13         .end  = AT91_CHIPSELECT_2 + 0xFF,
14         .flags = IORESOURCE_MEM
15     },
16     [2] = {
17         .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_LOWEDGE 
18                                                | IORESOURCE_IRQ_HIGHEDGE,
19     }
20 };
21 
22 static struct dm9000_plat_data dm9000_platdata = {
23     .flags = DM9000_PLATF_16BITONLY |DM9000_PLATF_NO_EEPROM,   
24 };
25 
26 static struct platform_device dm9000_device = {
27     .name               = "dm9000",
28     .id                     = 0,
29     .num_resource    = ARRAY_SIZE(dm9000_resource),
30     .resource            = dm9000_resource,
31     .dev                   = {
32         .platform_data = &dm9000_platdata,
33     }
34 };

  对 Linux 网络设备驱动体系结构的层次化设计实现了对上层协议接口的统一 和 硬件驱动对下层多样化硬件设备的可适应。我们需要完成的工作集中在设备驱动功能层,网络设备接口层 net_device 结构体的存在将千变万化的网络设备进行抽象,使得设备功能层中除数据包接收以外的主体工作都由填充 net_device 的属性和函数指针完成。

  在分析 net_device 数据结构的基础上,给出了设备驱动功能层设备初始化、数据包收发、打开和释放等函数的设计模板,这些模板对实际设备驱动的开发具有直接指导意义。有了这些模板,我们在设计具体设备的驱动时,不再需要关心程序的体系,而可以将精力集中于硬件操作本身。

  在 Linux 网络子系统和设备驱动中,套接字缓冲区 sk_buff 发挥着巨大的作用,它是所有数据流动的载体。网络设备驱动和上层协议之间也基于此结构进行数据包交互。

posted @ 2020-07-27 16:12  闹闹爸爸  阅读(1060)  评论(0编辑  收藏  举报